Blood donation bags at a blood drive in Rochester Michigan on March 24, 2020. |
What’s the purpose of blood, anyway? To carry oxygen. Let’s estimate the concentration of oxygen in blood (Fermi problem time). As a first step, Homework Problem 1 in Chapter 1 of IPMB asks the reader to estimate how much hemoglobin is in a red blood cell.
Problem 1. Estimate the number of hemoglobin molecules in a red blood cell. Red blood cells are little more than bags of hemoglobin, so it is reasonable to assume that the hemoglobin takes up all the volume of the cell.
My name tag at the blood drive. |
1.1 An important skill for students to learn is order-of-magnitude estimation. The first four problems in this chapter require the students to estimate some quantity of biological interest.
Approximate the dimensions of a red blood cell as 8 μm × 8 μm × 2 μm. Approximate the dimensions of a hemoglobin molecule as 6 nm × 6 nm × 6 nm. The number N of hemoglobin molecules is equal to the volume of a red blood cell divided by the volume of a hemoglobin molecule:
We do not expect a “back-of-the-envelope” estimate such as this one to be accurate to, say, a factor of 2 or π. But it should give a quick order of magnitude approximation.
I had a difficult time taking this selfie: one hand holding my phone, the book balanced on my chest, and a needle in the other arm. |
I admit, those are strange units. A cubic micron is 10-15 liters, and 6 million molecules is 10-17 moles. So, the concentration of oxygen in blood is about 0.01 molar, or 10 mM.
You can estimate the concentration of oxygen in air using the ideal gas law, pV = nRT. Air is about 20% oxygen, so using p = 0.2 atm, T = 310 K, and R = 0.082 liter atm/(mole K), you get n/V = 0.008, or 8 mM. Within the uncertainty of our rough estimate, this result implies that the concentration of oxygen in blood is nearly the same as the concentration of oxygen in air. As it should be! The whole point of blood is to get oxygen from the air into the tissues.
The best part of blood donation. |
After giving blood. My daughter Stephanie, who also donated, took the photo. |
No comments:
Post a Comment