Friday, August 25, 2023

Oppose Federal Legislation That Would Protect Homeopathic Drugs From FDA Regulation

In Intermediate Physics for Medicine and Biology, Russ Hobbie and I don’t talk about homeopathy (thank goodness!). A homeopathic medicine is one that has been diluted with water multiple times (for example, 30 dilutions, each by a factor of ten), until not even a single molecule of the active ingredient remains. Proponents of homeopathy believe that the water “remembers” the original ingredient. This, of course, conflicts with everything scientists know about water. If you believe physics underlies medicine, you should reject homeopathy.

Why bring up homeopathy now? I recently received an email from one of my favorite organizations—the Center For Inquiry (CFI)—calling on people to oppose federal legislation that would limit the Food and Drug Administration’s ability to regulate homeopathic drugs. Rather than repeating everything the CFI said, I’ll simply quote from their website. I already wrote my Congressman about this issue.
CFI calls on our supporters to help defeat a pro-homeopathy amendment being proposed for the federal appropriations bill H.R. 4368. The homeopathy lobby is pushing hard for this amendment, and we need CFI supporters to voice their opposition to their members of Congress.

Homeopathy groups such as Americans For Homeopathy Choice (AFHC) are lobbying strenuously for Appropriations Amendment #4. This amendment would bar FDA enforcement of the Food, Drug, and Cosmetic Act against new homeopathic drug products as long as a product complies with “standards for strength, quality, and purity set forth in the Homeopathic Pharmacopoeia of the United States.” In other words, it would replace much-needed federal regulation with the industry’s own standards.

CFI has consistently pointed out that homeopathy is bunk science that does not work beyond the placebo effect. Homeopathic products are typically diluted to the point that no active ingredients remain. It is quack medicine and consumer fraud.

The Homeopathic Pharmacopoeia’s standards of quality are not medically valid. Yet the amendment would exempt homeopathic products from FDA regulation and oversight if they comport with those standards. This amounts to an argument of “No need for federal regulation, we can regulate ourselves with our own standards even if they constitute medical fraud” – or, more succinctly, “Let the fox guard the henhouse, please.” (Indeed, CFI has tussled with the Homeopathic Pharmacopoeia before.)

At the moment, AFHC and the homeopathy lobby are seeking additional co-sponsors in the House of Representatives for their amendment. This is where CFI’s supporters come in.

We need our supporters to mobilize and contact their members in the House of Representatives immediately. Please let them know, in no uncertain terms, that homeopathy cannot and must not escape federal regulation. It is crucial to keep Appropriations Amendment #4 out of the federal appropriations bill.

 

 Homeopathy, quackery and fraud, a TED talk by James Randi.

https://www.youtube.com/watch?v=c0Z7KeNCi7g

Friday, August 18, 2023

Paul Maccabee (1944–2023)

Paul Maccabee
Paul Maccabee (1944–2023).
Photo used with permission from the
Downstate Health Sciences University website.

My friend and collaborator Paul Maccabee died on July 24. Paul was a pioneer in the field of magnetic stimulation, a topic that Russ Hobbie and I discuss in Chapter 8 of Intermediate Physics for Medicine and Biology. Paul’s career and mine had many parallels. We both worked on magnetic stimulation in the late 1980s and early 1990s. We both collaborated with a leading neurophysiologist: Paul with Vahe Ammasian and me with Mark Hallett. We both recognized the importance of laboratory animal experiments for identifying physiological mechanisms. We both were comfortable working with biomedical engineers, I entered that field from physics and Paul from medicine. 

Paul was about 15 years older than me and I viewed him as a role model. I believe I first met him at the 1989 International Motor Evoked Potential Symposium in Chicago, a key early conference dedicated to magnetic stimulation. Our paths crossed at other scientific meetings and his research had a major impact on my own. For years I taught a graduate class on bioelectricity at Oakland University and I had my students read Paul’s 1993 Journal of Physiology paper (described below) which I assigned because it’s a classic example of a well-written scientific article. According to Google Scholar that paper has been cited 374 times, and it should be cited even more.

I wrote about Paul in my review of the development of transcranial magnetic stimulation (BOHR International Journal of Neurology and Neuroscience, Volume 1, Pages 8–20, 2022, https://doi.org/10.54646/bijnn.002). Below I quote part of that article. I put his name in bold so you can find it easily.

Although this experiment [performed by Jan Nilsson and Marcela Panizza at the National Institutes of Health, see reference 49] confirmed [Peter Basser and my] prediction [that neural excitation occurs where the gradient of the induced electric field is largest, see reference 58], there were nevertheless concerns because of the heterogeneous nature of the bones and muscles in the human arm. At about the same time Nilsson and Panizza were doing their experiment at NIH, Paul Maccabee was performing an even better experiment at the New York Downstate Medical Center in Brooklyn. Maccabee obtained his MD from Boston University and collaborated in Brooklyn with the internationally acclaimed neuroscientist Vahe Ammasian [1, 40–43]. This research culminated in their 1993 article in the Journal of Physiology, in which they examined magnetic stimulation of a peripheral nerve lying in a saline bath [44]. First, they measured the electric field Ey (they assumed the nerve would lie above the coil along the y-axis) and its derivative along the nerve produced by a figure-8 coil located under the bath (Figure 9). They found that the electric field was maximum directly under the center of the coil, but the magnitude of the gradient dEy/dy was maximum a couple centimeters either side of the center.
Figure 9. Contour plots of the electric field (Ey, red) and its spatial derivative (dEy/dy, blue) induced by a figure-eight coil (purple) placed under a tank filled with saline and measured using a bipolar recording electrode. The y direction is downward in the figure, parallel to the direction of the nerve (see Figure 10). Adapted from Figure 2 of Maccabee et al. [44].
Next they placed a bullfrog sciatic nerve in the dish and recorded the electrical response from one end (Figure 10). They found a 0.9 ms delay between the recorded action potentials when the polarity of a magnetic stimulus was reversed (the yellow and red traces on the right). Given a propagation speed of about 40 m/s, the shift in excitation position was about 3.6 cm, consistent with what Basser and I would predict.
Figure 10. Recordings from an electrode (black dot) at the distal end of a bullfrog sciatic nerve (green) that was immersed in a trough filled with saline (blue) and stimulated with a figure-8 coil (purple). The nerve emerged from the saline to rest on the recording electrode in air. The compound nerve action potentials were elicited by a stimulus of one polarity (orange), then the other (red). Adapted from Figure 3 of Maccabee et al. [44].
So far, their study was similar to what we performed at NIH in a human, but then they did an experiment that we could not do. To determine how a heterogeneity would impact their results, they placed two insulating cylinders on either side of the nerve (Figure 11). These cylinders modified the electric field, moving the negative and positive peaks of the activating function closer together. They observed a corresponding reduction in the latency shift. This experiment provided insight into what happens when a human nerve passes between two bones, or some similar heterogeneity.

Figure 11. Magnetic stimulation of a sheep phrenic nerve immersed in a homogeneous (left) and inhomogeneous (right) volume conductor. The figure-8 coil (purple) was positioned under the nerve (green). The yellow circles indicate the position of the insulating cylinders. The electric field Ex (red) and its gradient dEx/dx (blue) were measured along the nerve trajectory. The compound nerve action potentials at the recording electrode were measured for a magnetic stimulus of one polarity (orange) and then the other (green). Adapted from Figure 5 of Maccabee et al. [44].

Finally, they changed the experiment by bending the nerve and found that a bend caused a low threshold “hot spot,” and that excitation at that spot occurred where the electric field, not its gradient, was large. This result was consistent with Nagarajan and Durand’s analysis of excitation of truncated nerves [47].

In my opinion, Maccabee’s [44] article is the most impressive publication in the magnetic stimulation literature. Only Barker’s original demonstration of transcranial magnetic stimulation can compete with it [2].

Later in that review, I discussed a collaborative paper that Paul and I published.

One frustrating feature of the activating function approach is that excitation does not occur directly under the center of a figure-8 coil, where the electric field is largest, but off to one side, where the gradient peaks (Figure 9). Medical doctors do not want to guess how far from the coil center excitation occurs; they would prefer a coil for which “x” marks the spot. It occurred to me that such a coil could be designed using two adjacent figure-8 coils. I called this the four-leaf coil (Figure 12). John Cadwell from Cadwell Laboratories (Kennewick, Washington) built such a coil for me. Having seen the excellent results that Maccabee was obtaining using his nerve-in-a-dish setup, I sent the coil to him so he could test it. The resulting paper [65] showed that for one polarity of the stimulus the magnitude of the gradient of the electric field was largest directly under the coil center so the axons there were depolarized (“x” really did mark the spot of excitation). In addition, if the polarity of the stimulus was reversed, the magnitude of the gradient remained large under the coil center, but it now tended to hyperpolarize rather than depolarize the axons. Maccabee and I hoped that such hyperpolarization could be used to block action potential propagation, acting like an anesthetic. The Brooklyn experiments verified all the predictions of the activating function model for the four-leaf coil. Unfortunately, Maccabee never observed any action potential block. Perhaps, the hyperpolarization required for block was greater than the coil could produce.

Figure 12. A four-leaf coil (purple) used to stimulate a peripheral nerve (blue). Adapted from Figure 1 of Roth et al. [65].


[1] Amassian, V. E., Eberle, L., Maccabee, P. J., and Cracco, R. Q. (1992). Modelling magnetic coil excitation of human cerebral cortex witha peripheral nerve immersed in a brain-shaped volume conductor:The significance of fiber bending in excitation. Electroenceph. Clin. Neurophysiol., 85, 291–301.

[2] Barker, A. T., Jalinous, R., and Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. Lancet, 1, 1106–1107.

[40] Maccabee, P. J., Amassian, V. E., Cracco, R. Q., and Cadwell, J. A. (1988). An analysis of peripheral motor nerve stimulation in humans using the magnetic coil. Electroenceph. Clin. Neurophysiol., 70, 524–533.

[41] Maccabee, P. J., Eberle, L., Amassian, V. E., Cracco, R. Q., Rudell, A., and Jayachandra, M. (1990). Spatial distribution of the electric field induced in volume by round and figure ‘8’ magnetic coils: Relevance to activation of sensory nerve fibers. Electroenceph. Clin. Neurophysiol., 76, 131–141.

[42] Maccabee, P. J., Amassian, V. E., Cracco, R. Q., Cracco, J. B., Eberle, L., and Rudell, A. (1991a). Stimulation of the human nervous system using the magnetic coil. J. Clin. Neurophysiol., 8, 38–55.

[43] Maccabee, P. J., Amassian, V. E., Eberle, L. P., Rudell, A. P., Cracco, R. Q., Lai, K. S., and Somasundarum, M. (1991b). Measurement of the electric field induced into inhomogeneous volume conductors by magnetic coils: Application to human spinal neurogeometry. Electroenceph. Clin. Neurophysiol., 81, 224–237.

[44] Maccabee, P. J., Amassian, V. E., Eberle, L. P., and Cracco, R. Q. (1993). Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: Locus of excitation. J. Physiol., 460, 201–219.

[47] Nagarajan, S. S., Durand, D. M., and Warman, E. N. (1993). Effects of induced electric fields on finite neuronal structures: A simulation study. IEEE Trans. Biomed. Eng., 40, 1175–1188.

[49] Nilsson, J., Panizza, M., Roth, B. J., Basser, P. J., Cohen, L. G., Caruso, G., and Hallett, M. (1992). Determining the site of stimulation during magnetic stimulation of a peripheral nerve. Electroenceph. Clin. Neurophysiol., 85, 253–264.

[58] Roth, B. J. and Basser, P. J. (1990). A model of the stimulation of a nerve fiber by electromagnetic induction. IEEE Trans. Biomed. Eng., 37, 588–597.

[65] Roth, B. J., Maccabee, P. J., Eberle, L., Amassian, V. E., Hallett, M., Cadwell, J., Anselmi, G. D., and Tatarian, G. T. (1994a). In-vitro evaluation of a four-leaf coil design for magnetic stimulation of peripheral nerve. Electroenceph. Clin. Neurophysiol., 93, 68–74.

Although my name was listed first on our joint 1994 article, Paul could easily have been the lead author. The coil shape was my idea but he performed all the experiments. I never set foot in Brooklyn; I just mailed the coil to him.

Paul was a giant in the field of magnetic stimulation. The articles I list above are only a few of the many he published. For a medical doctor he had a strong grasp of electricity and magnetism. I lost track of him over the years but had the good fortune to reconnect with him a few months ago by email.

I miss Paul Maccabee. Anyone who studies, uses, or benefits from magnetic stimulation owes him a debt of gratitude. I know I do.

Friday, August 11, 2023

The Connect Our Parks Act is Safe, but Maybe Not Wise

Congress is currently considering the “Connect Our Parks Act.” It is
a bill to require the Secretary of the Interior to conduct an assessment to identify locations in National Parks in which there is the greatest need for broadband internet access service and areas in National Parks in which there is the greatest need for cellular service, and for other purposes.
I don’t want people hiking through Yellowstone while squawking on their cell phone, so I’m not sure I’d vote for the bill. However, a recent opinion piece in The Hill by Devra Davis, titled “We Cannot Ignore the Dangers of Radiation in Our National Parks,” encourages people to oppose the bill because of “the damaging impacts of wireless radio frequency (RF) radiation — emitted by cellular installations — on all living creatures.” She concludes that “Expanding cell towers in parks without adequate safeguards will irrevocably harm wildlife, the environment and our encounters with the wild.”

Are Electromagnetic Fields
Making Me Ill?

The health risk of cell phone radiation is small to negligible. Russ Hobbie and I review much of the evidence of radio-frequency health effects in Section 9.10 of Intermediate Physics for Medicine and Biology. I also discuss this topic in my book Are Electromagnetic Fields Making Me Ill? In that publication, I specifically address Davis’s book Disconnect, which promotes a connection between cell phone radiation and cancer. My conclusions differ from hers. I wrote
Reviews such as these [for example, the FDA’s 2020 review] are a key reason the major health agencies do not believe that cell phones cause cancer. When agency scientists systematically weigh all the evidence, they consistently find no effect. The Centers for Disease Control and Prevention (CDC)—the US government federal agency that is responsible for protecting public health—is a bit more equivocal: “At this time we do not have the science to link health problems to cell phone use” [22]. The National Cancer Institute (NCI) is part of the US National Institutes of Health and is the primary federal agency for cancer research. Many of the nation’s best and brightest scientists and doctors work for, or are funded by, the NCI. Anyone who wants expert information about cancer should consult the NCI. On its website, it concludes that “the only consistently recognized biological effect of radiofrequency radiation absorption in humans that the general public might encounter is heating to the area of the body where a cell phone is held (e.g., the ear and head). However, that heating is not sufficient to measurably increase body temperature. There are no other clearly established dangerous health effects on the human body from radiofrequency radiation” [13].
Decide for yourself if you support the Connect Our Parks Act. I can see how cell phone reception could be vital for a hiker lost in the Grand Canyon but I don’t want people using their laptop to conduct a noisy zoom meeting in Yosemite. Do not, however, oppose the Connect Our Parks Act because of concerns about health hazards from electromagnetic radiation. There is little evidence that such hazards exist. If you want to examine the evidence yourself, get a copy of Are Electromagnetic Fields Making Me Ill? The Connect Our Parks Act is safe, but maybe not wise.

Friday, August 4, 2023

Philip Morse, Biological Physicist

This Sunday is the 120th anniversary of the birth of American physicist Philip Morse (1903–1985). Russ Hobbie and I mention Morse in Chapter 13 of our book Intermediate Physics for Medicine and Biology. We write
A classic textbook by Morse and Ingard (1968) provides a more thorough coverage of theoretical acoustics.
Theoretical Acoustics, by Morse and Ingard, superimposedo on Intermediate Physics for Medicine and Biology.
Theoretical Acoustics,
by Morse and Ingard.
The reference is to the book
Morse PM, Ingard KU (1968) Theoretical Acoustics. McGraw-Hill, New York.
In order to describe Morse’s life, I’ll quote excerpts from his obituary in the February, 1986 issue of Physics Today, written by his coauthor Herman Feshbach.
It was at Case [School of Applied Science, now Case Western Reserve University] that his lifelong interest in acoustics began. Morse received his BS in 1926, and pursued his graduate studies at Princeton University. It was a very exciting time, as the new quantum mechanics was the focus of attention.
Anyone who’s studied the vibrational states of molecules will probably have seen the Morse potential.
He wrote several papers alone and with Ernst Stueckelberg on molecular physics—in one of these he developed the “Morse potential.”
The Morse potential looks like the function plotted in Fig. 14.8 of IPMB, although we didn’t mention Morse by name in that chapter.

Morse joined MIT on the faculty. There he taught acoustics and quantum mechanics.
He gave advanced instruction to the brighter undergraduate students. One such undergraduate was Richard Feynman and the subject was quantum mechanics. At this time he renewed his interest in acoustics. A consequence was his book Vibration and Sound (1936), which he revised and expanded with Uno Ingard in 1968. Of equal importance to his book was his impact on the field: He brought up to date the methods employed by Lord Rayleigh and applied the results to practical problems of, for example, architectural acoustics.
Although Morse was not involved in the Manhattan Project, he did do applied physics research during World War II.
He and his colleagues played a decisive role in the defeat of the German submarine campaign. He gave a fascinating account of that effort in his autobiography, In At The Beginnings: A Physicist’s Life.
As influential as Morse’s book on acoustics is, his best-known book is probably the two-volume Methods of Theoretical Physics with Feshbach. That book is a little too advanced to be cited in IPMB, but I remember consulting it often during graduate school. 
 
The Handbook of Mathematical Functions..., superimposed on Intermediate Physics for Medicine and Biology.
Handbook of Mathematical Functions,
with Formulas, Graphs,
and Mathematical Tables.
Morse chaired the advisory committee that supervised the production of the Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables.
Morse was the driving force behind the useful Handbook of Mathematical Functions, edited by Milton Abramovitz and Irene Stegun and produced by NBS [National Bureau of Standards] in 1964.
Feshbach concluded
Morse’s was truly a distinguished career, characterized by a unique breadth and fostered by his wide range of interests and his ability to initiate and develop new ventures. He was a dedicated scientist, or better, natural philosopher. As he wrote: “For those of us who like exploration, immersion in scientific research is not dehumanizing; in fact it is a lot of fun. And in the end, if one is willing to grasp the opportunities it can enable one to contribute something to human welfare.”
Would Morse have considered himself a biological physicist? Probably not. But his main interest was acoustics, and sound perception is inherently biological. In a few places Theoretical Acoustics deals with the physics of hearing. I’m comfortable declaring him an honorary biological physicist.
 
Happy birthday, Philip Morse!