Showing posts with label book review. Show all posts
Showing posts with label book review. Show all posts

Friday, December 8, 2023

One Hot Summer: Dickens, Darwin, Disraeli, and the Great Stink of 1858

One Hot Summer, by Rosemary Ashton, superimposed on Intermediate Physics for Medicine and Biology.
One Hot Summer,
by Rosemary Ashton.
I recently finished Rosemary Ashton’s book One Hot Summer: Dickens, Darwin, Disraeli, and the Great Stink of 1858. Her prologue begins
What was it like to live in London through one of the hottest summers on record, with the Thames emitting a sickening smell as a result of the sewage of over two million inhabitants being discharged into the river? How did people cope with the extraordinary heat leading up to the hottest recorded day, Wednesday, 16 June 1858? What did those living or working near the Thames—including at the Houses of Parliament and the law courts in Westminster Hall—do when they found their circumstances intolerable? What did the newspapers say?
Ashton proposes to examine London for just a few months in the summer of 1858, providing a snapshot of one moment in Victorian England. Such a microhistory provides insight into the life of mid-19th century Britain.
Microhistory, the study in depth and detail of historical phenomena, can uncover hitherto hidden connections, patterns, and structures. Some events and incidents are revealed over time to have been life changing or nation building. Examples from 1858 are the tackling of London’s sewage and the resultant improvement of public health, Brunel’s engineering feats, the initial laying of the Atlantic telegraph cable, the beginnings of a long process of attaining justice and equality in the matter of marriage and divorce, and the transformation of the miscellaneous medical practice into a proper profession.
She focuses on the novelist Charles Dickens, biologist Charles Darwin, and politician Benjamin Disraeli.
A comparatively neglected time in Disraeli’s career can be shown to have been remarkably important in bringing him to prominence. The attention of historians and biographers has focused hitherto on his reckless youth, his racy novels, his controversial journalism, and his late-won success from 1868, when he finally became prime minister. His hard work in the parliamentary session of 1858, particularly in the hectic weeks before the summer break beginning on 2 August, and his success in turning round a hostile press and distrustful colleagues by his efforts, deserve to be acknowledged. In Dickens’s case his painful and self-exposing actions in connection with his failed marriage have been fully discussed, but no detailed account exists of the day-to-day struggles he faced in the long summer which followed his catastrophic error of judgment in advertising his separation from his wife in the early days of June. As for Darwin, though much has been written about his abrupt shock and change of plans on receiving in mid-June Wallace’s letter outlining natural selection, little attention has been paid to the interaction between his family life and scientific work in summer 1858.

This idea of a microhistory sounds fun, and I thought readers of Intermediate Physics for Medicine and Biology might be interested in learning about events in the summer of 1858 that influenced physics, biology, and medicine. So, in this blog post I augment Ashton’s analysis by adding incidents from the world of science.

Charles Darwin (age 48, all ages are as of summer 1858) had been developing his theory of evolution by natural selection for twenty years, since returning to England in 1836 after his famous voyage on the HMS Beagle. Over the years he had told his friends Joseph Hooker (age 41) and Charles Lyell (age 61) about his ideas, but had never published them. Ashton describes how on June 18, 1858 Darwin received a letter from Alfred Russel Wallace (age 35), containing a draft of a paper describing the same idea of natural selection as the mechanism of biological evolution, written while Wallace was collecting biological specimens in the Malay Archipelago. Hooker and Lyell arranged to have some early private writings of Darwin’s, along with the paper by Wallace, published on July 1 at a meeting of the Linnean Society of London

On the Origin of Species, by Charles Darwin, superimposed on Intermediate Physics for Medicine and Biology.
On the Origin of Species,
by Charles Darwin.
The following year, Darwin published his much more detailed book On the Origin of Species, changing biology forever. One of the most pugnacious of the advocates for natural selection was his young friend Thomas Henry Huxley (age 33), known as “Darwin’s Bulldog.” In 1858 Huxley was the Fullerian Professor of Physiology at London's Royal Institution, and on June 17, 1858 he gave the Royal Society’s annual Croonian Lecture. Darwin’s friend Charles Lyell—winner of the Royal Society’s prestigious Copley Medal in 1858 for his contributions to geology—never completely embraced natural selection.

On June 10, 1858 the botanist Robert Brown died in London, at age 84. In Chapter 4 of IPMB, Russ Hobbie and I write

This movement of microscopic-sized particles, resulting from bombardment by much smaller invisible atoms, was first observed by the English botanist Robert Brown in 1827 and is called Brownian motion.
Brown’s death had an interesting impact on the Darwin/Wallace publications. Ashton writes
By a stroke of luck the death of the former president Robert Brown had induced the [Linnean] society to postpone its summer meeting from 17 June, the day before Darwin received Wallace’s letter, to Thursday, 1 July. This meant that Darwin (and Wallace) would not have to wait until September to have their papers made public.
One of the most famous scientists in England during 1858 was Michael Faraday (age 65). In Chapter 8 of IPMB, Russ and I discuss electromagnetic induction, which underlies transcranial magnetic stimulation of the brain.
In 1831 Michael Faraday discovered that a changing magnetic field causes an electric current to flow in a circuit.
Faraday, Maxwell, and the Electromagnetic Field, by Forbes and Mahon, superimposed on Intermediate Physics for Medicine and Biology.
Faraday, Maxwell, and the
Electromagnetic Field
,
by Forbes and Mahon.

After a long career at the Royal Institution, Faraday moved from his home at the RI to a house at Hampton Court in 1858. In their book Faraday, Maxwell, and the Electromagnetic Field, Nancy Forbes and Basil Mahon write
As Faraday’s health and mental faculties declined, he began to relinquish his various responsibilities at the Royal Institution, finally handing over the directorship to John Tyndall in 1865. The consequent loss of income, and of his flat, would have been a worry, but in 1858 Prince Albert, a great admirer, had asked the queen to put a house at Hampton Court at his disposal. Faraday had refused at first, fearing the high cost of repairs, but the queen said she would pay. He and Sarah [his wife] moved in, and the new house became his last home.
Although his research career was winding down, Faraday was still a great science communicator. On June 12, 1858 he gave a RI lecture “On the relation of gold to light,” about light scattering from gold colloids (nowadays we would call them gold nanoparticles). He was also famous for his Christmas lectures, which he gave annually throughout the 1850s.

Faraday’s work in electricity and magnetism was carried on by the young James Maxwell (age 27), who was married on June 2, 1858 in Aberdeen, Scotland. That year, Maxwell published his paper “On Faraday’s Lines of Force” (although it had been read before the Cambridge Philosophical Society in late 1855 and early 1856). Forbes and Mahon write
In February 1857, [Maxwell] decided to send a copy of his paper “On Faraday’s Lines of Force” to the great man [Faraday]. No doubt, he did so with some trepidation… He needn’t have worried. As we’ve seen, Faraday’s response was grateful, gracious, and charming. The two had at once formed a rare bond.
In the 1860s Maxwell continued his research on electromagnetism, and eventually developed the four Maxwell’s equations that rival Darwin’s theory of evolution as the most significant scientific contribution of the 19th century.

A Thread Across the Ocean, by John Steele Gordon, superimposed on Intermediate Physics for Medicine and Biology.
A Thread Across the Ocean,
by John Steele Gordon.
Besides Faraday and Maxwell, a third great Victorian physicist was William Thomson (age 34), who was one of the main scientists involved in developing the transatlantic telegraph. As part of that effort, in February of 1858 Thomson patented the mirror galvanometer, which is an instrument to measure electrical current. In his book A Thread Across the Ocean, John Steele Gordon describes this device.
In a long submarine cable, immersed in a conducting medium—saltwater—the current if often very low, sometimes no more than ten mircoamperes. (The current in a standard incandescent lightbulb is about 100,000 times as great.) The standard galvanometers then available were often inadequate to detect a signal coming through a cable that would be two thousand miles long. So Thomson—half Einstein, half Edison—developed a much better one. He took a very small magnet and attached a tiny mirror to it. Both together weighed no more than a grain. He suspended the magnet from a silk thread and set it in the middle of the coil of very thin insulated copper wire.

When the faint current flowing through the cable was allowed to flow through the copper coil, it created a magnetic field. This caused the magnet, with its attached mirror, to deflect. Thomson simply directed a beam of light from a shaded lamp onto the mirror and allowed it reflection to hit a graduated scale.

In June of 1858 two ships—the Agamemnon and the Niagara—attempted to meet in the middle of the Atlantic Ocean, splice together the two halves of the cable, and then each pay out the cable as they sailed toward shore: the Niagara toward Newfoundland and the Agamemnon toward Ireland. However, a terrible storm struck the North Atlantic that month, nearly capsizing the Agamemnon with Thomson on board and aborting the mission.

On Sunday, June 20, the storm unleashed a fury such as few sailors ever see and even fewer live to tell about. The caption feared that the coil on the deck, working against its restraints, might break lose and smash through the side, undoubtedly causing the ship to founder.

A second try several weeks later proved more successful. On August 16, the first transatlantic telegraph message was sent between Queen Victoria in England and President James Buchanan in the United States. Unfortunately, the cable soon failed, and it was not until some years later that reliable telegraph service was established across the Atlantic.

Based on his basic research discoveries and his contributions to the telegraph, Thomson became a scientific hero. Gordon writes

In 1892, William Thomson became the first British scientist to be raised to the peerage, when Queen Victoria created him Lord Kelvin of Largs. He has been known ever since as Lord Kelvin. In 1908, the year after he died, the Kelvin temperature scale, devised by him in the 1850s, was named in his honor.

The absolute temperature scale, with Kelvin’s name attached to the unit of temperature, appears throughout IPMB.

Still another notable Victorian physicist was George Stokes (age 36), who at that time was the Lucasian Professor at Cambridge University (a position held earlier by Isaac Newton and later by Stephen Hawking). IPMB often uses Stokes’ law for the viscous force of a small sphere in a fluid. Stokes and Thomson were close friends, and their many letters are preserved. I provide a few excerpts from these letters during late 1857 and 1858.

2 College, Glasgow

Dec. 23, 1857

My Dear Stokes

That principle, in the hydrodynamics of a “perfect liquid”, which I first learned from you, is something that I have always valued as one of the great things of science, simple as it is, and I now see more than ever its importance. One conclusion from it is that instability, or a tendency to run to eddies, or any kind of dissipation of energy, is impossible in a perfect liquid (a fluid with neither viscosity nor compressibility)... [several pages follow with many equations]...Some of the simplest applications of the theory are very interesting: for instance the... case of a circular disc or oblate spheroid, moving... in a perfect [liquid]...

As to Faraday’s magneto-optic experiment, I think my argument that it must depend on a peculiar state of motion induced by magnetic influence (Proceedings R. S. June or July 1856) is unanswerable. Have you considered it?...

It seems like old times for me to be writing you so long a letter, and I am afraid you will be less disposed to be so bored. Your redress simply be not to read it.

With best wishes for a “Merry Christmas” of which there can be no doubt now, I remain

Yours always truly

William Thomson

Stokes responded,

69 Albert Street Regent's Park London N.W.

Feb. 12, 1858

My Dear Thomson,

I have been so very busy of late that your letter has remained for a long time unanswered. I now set to answer it, though I have still got plenty of work before me...

Without having a decided opinion either way I have always inclined to the belief that the motion of a perfect incompressible liquid, primitively at rest, about a solid which continually progressed, was unstable... [pages of math...]

In speculating a good while ago (in fact no great time after Faraday’s discovery) as to the cause of magnetic rotation I naturally tried rotations of the luminiferous ether as suggested by Ampere’s theory...

Yours very truly

G. G. Stokes

Finally, late in 1858, Stokes wrote

The Athenaeum

Oct 5/58

My Dear Thomson,

... It is a great pity to see the [transatlantic] cable in its present state after apparently so successful a laying down. Still the thing has been done and even if this should be utterly lost the matter will not I presume rest there.

I did not go to Leeds this meeting [The British Science Association met in Leeds in 1858]. On the morning of the 27th my wife was safely delivered of a fine boy. She is going on very well but I am afraid her complete recovery will be slow.

Yours very truly

G. G. Stokes

James Joule (age 39) was yet another English physicist of the Victorian era. His name appears repeatedly in IPMB because the unit of energy is named after him. In the 1840s Joule had done pioneering work on the mechanical equivalent of heat and the conservation of energy, and in the 1850s had collaborated to explain the Joule-Thomson effect. In 1858 he was in a train wreck while traveling home from London. Although unhurt, the accident made him reluctant to travel, somewhat isolating him from the scientific community.

Gray’s Anatomy, below Intermediate Physics for Medicine and Biology.
Gray’s Anatomy.

 A major event in medicine occurred during the summer of 1858: the publication of the first edition of Gray’s Anatomy. In his article “Happy Birthday, Gray’s Anatomy,” Adrian Flatt (Proc. Bayl. Med. Cent., 22:342–345, 2009) writes

Anatomy Descriptive and Applied was first published in London in the summer of 1858 by two young demonstrators of anatomy in St. George’s Hospital at Hyde Park Corner… These two young men were very different. Henry Gray [age 31] wrote the text; he was 4 years older than Henry Vandyke Carter [age 27], who drew all the illustrations…
The print number of 2000 books had been decided, page size was fixed, and all the paper purchased. Considerable adjustments were successfully made and by mid May 1857, the work was going well but was to be interrupted by the absence of Gray. He had received an invitation to “attend” the Duke of Sutherland on his private yacht sailing around England and Scotland and at the estate at Dunrobin Castle for the next 6 months, from June to November 1857. This was manna from heaven for Gray; service for such an aristocrat would be of enormous help to his practice. Carter continued work on the book, of which the final proof corrections were done in late June or early July 1858, in time for the book to be available for students arriving in September.
Gray died at age 34, just three years after publication of his textbook, of smallpox. Apparently the relationship between Gray and Carter was strained. Flatt states that
Gray never gave Carter one penny from all the royalties the early editions of the book earned.
Diagram of the causes of mortality in the army in the East (1858)
Diagram of the causes of mortality
in the army in the East (1858).

Another leading figure of Victorian health care was Florence Nightingale (age 38), the founder of modern nursing. In 1858 Nightingale published Notes on Matters Affecting the Health, Efficiency, and Hospital Administration of the British Army. Founded Chiefly on the Experience of the Late War. Presented by Request to the Secretary of State for War. This work contained a color statistical illustration called “Diagram of the Causes of Mortality in the Army of the East” that showed that epidemic disease—which caused more British deaths during the Crimean War than battlefield wounds—could be controlled by nutrition, ventilation, and shelter. The infographic became known as Nightingale’s “coxcomb.” Her achievements in statistics were so remarkable that in 1858 she was selected as the first woman fellow of the Royal Statistical Society. Two years later she established her nursing school at Saint Thomas’ Hospital in London.

Another noteworthy happening in medicine was the death of John Snow (age 45) on June 16, 1858 (London’s hottest day of that steamy summer). Snow was best known for figuring out the source of the Broad Street cholera outbreak in 1854, when he demonstrated that cholera was being spread through contaminated water from one specific pump. He also studied using ether as an anesthesia during surgery. 

The Ghost Map, by Steven Johnson, superimposed on Intermediate Physics for Medicine and Biology.
The Ghost Map,
by Steven Johnson.
In his fascinating book The Ghost MapSteven Johnson writes about the prevailing belief that miasma (bad air) caused disease.

In June 1858, a relentless early-summer heat wave produced a stench of epic proportions along the banks of the polluted Thames. The press quickly dubbed it the “Great Stink”... [Yet] the rates of death from epidemic disease proved to be entirely normal. Somehow the most notorious cloud of miasmatic air in the history of London had failed to produce even the slightest uptick in disease mortality... It's easy to imagine John Snow taking great delight in [this] puzzling data... But he never got the opportunity. He had suffered a stroke in his office on June 10... and died six days later, just as the Great Stink was reaching its peak above the foul waters of the Thames.

Joseph Lister (age 31) was in Edinburgh in 1858, studying the coagulation of blood and inflammation. In the 1860s he developed antiseptic surgery, and later relocated to London. In their article “Joseph Lister: Father of Modern Surgery” (Can. J. Surg., 55:E8–E9, 2012), Dennis Pitt and Jean-Michel Aubin claim that 

it was Lister’s application of germ theory to the care of surgical patients that laid the foundation for what surgeons do now. He directed the minds of physicians and surgeons to the vital necessity of keeping wounds clean and free of contamination.

Finally, in 1858 Elizabeth Garrett Anderson (age 22) was a young woman dreaming of making a career in medicine. She eventually became the first female doctor in the United Kingdom.

Ashton believes that microhistory provides valuable insight into Victorian England. Near the end of her Prologue she concludes

Intense scrutiny of the lives of these men [Dickens, Darwin, and Disraeli, plus Brown, Faraday, Maxwell, Thomson, Stokes, Joule, Gray, Nightingale, Snow, and others] over a short period of a few months allows us to make fresh threads of connection between each of them and the larger society in which they lived, all at a time of public events which provided to be of lasting national importance.

Friday, December 1, 2023

Louis Pasteur, Biological Physicist

Louis Pasteur (1822–1895)
One recurring theme in this blog is how scientists make the transition from working in the physical sciences to studying the biological sciences. Indeed, this theme is intimately related to Intermediate Physics for Medicine and Biology. Recently, I decided to consider a case study of how a prominent scientist straddled physics, biology, and medicine. So, I searched for someone famous who illustrates how one trained in physics can end up contributing to the life sciences. I selected Louis Pasteur.

Louis Pasteur, by Patrice Debré.

I base this study on the biography Louis Pasteur by Patrice Debré (translated from French to English by Elborg Forster). As I read this book, I focused on the key events in Pasteur’s education and early research when he made this transition. 

Pasteur began his career as a physical scientist studying at the École normale supérieure in Paris.

For his doctorate, Pasteur had to submit two theses, one in physics and one in chemistry. The physics thesis brought together several studies concerning the use of the polarimeter… Pasteur’s first studies showed, or rather confirmed, that two isomorphic substances rotate polarized light to the same degree.
Polarization was a new topic in physics at that time. Étienne-Louis Malus, a fellow Frenchman, discovered the Law of Malus, governing how much light passes through two polarizers, in 1808, just 14 years before Pasteur’s birth. Pasteur’s friend and mentor Jean-Baptiste Biot first showed that polarized light could be rotated when passed through certain crystals. Pasteur’s contribution was to prove that crystals formed from tartaric acid could rotate polarized light either clockwise or counterclockwise, depending on the chirality of the crystal (this acid is asymmetric, having two forms that are mirror images of each other, like the left hand and the right hand). In a famous experiment, he inspected the structure of each crystal under a microscope and determined if it was left or right handed. When he then separated the two types of crystals he could obtain rotation in either direction, although a mixture of the two crystals did not rotate light. This discovery, made in 1848, at first appears to arise from physics and chemistry alone, but its relation to biology is that most biological molecules exist in only one version. Handedness matters in biology. Debré writes
In discovering the principles of molecular asymmetry, Pasteur had done nothing less than to forge a key—and this key has unlocked the door to the whole of modern biology… When Pasteur considered asymmetry on a cosmic scale, he went beyond the confines of physics and chemistry to confront the fundamental questions about life.
Pasteur’s next step toward biology came when he was a young professor at the University of Lille.
At the beginning of the academic year 1856, an industrialist of Lille, M. Bigo, whose son Emile was taking Pasteur’s course at the Faculty of Sciences, came to see him. Many manufacturers of beet root alcohol, he said, were having problems with their production…
This led to Pasteur’s research on fermentation, when a microorganism such as yeast brings about a change to a food or beverage, such as producing alcohol. Fermentation and light polarization do not appear to have much in common, but they do.
The findings Pasteur presented to the Academy of Sciences of Lille, and subsequently that of Paris, seemed very different from the studies he had undertaken previously. He was known as a specialist on crystals, and now he had become a theoretician of fermentation. Ranging from polarized planes of light to culture media, his reagents had little in common. Yet the preoccupations that guided Pasteur’s thinking at that period were not really different from those that had haunted him for a long time: he wanted to understand the relationship between life and molecular asymmetry.
The idea that a living microscopic organism was responsible for fermentation was one of Pasteur’s key insights. In fact, there were two types of yeast involved in beet root fermentation. The desirable one produced alcohol. The undesirable one, that led to all the problems, produced lactic acid. Debré concludes
A few years after the request of industrialist Bigo, Pasteur had thus established beyond a doubt that the lactic acid in the vats in the rue d’Esquermes came from an unfortunate contamination with this yeast. He even suggested the means to get rid of this contamination… Pasteur’s research on fermentation created microbiology.
Pasteur’s work on fermentation led to the related question of spontaneous generation. Many scientists at the time thought that living organisms could spontaneously arise in dead and decaying tissue, but Pasteur showed that such decay was always due to germs that entered the tissue from the air.

Pasteur’s transition to biology became complete after Jean-Baptiste Dumas asked him to investigate a disease that was destroying the silkworm industry in France. To address this issue, he needed to learn more biology.
Pasteur came from crystals. Owing to his scant knowledge of animal biology, he was somewhat apprehensive about experiments on animals. As soon as he accepted Dumas’s assignment, he therefore went, along with his assistant Emile Duclaux, to the physiology course taught by Claude Bernard at the Sorbonne. There he took notes and humbly relived his years of training in the halls of the university. But he found it difficult to learn a whole new field; and indeed, since he had neither the time nor the patience to do this, he soon preferred to form his own ideas on the problem at hand.
Once again, Pasteur was successful in addressing a biological problem; this time bacteria infecting silkworms (they are not really a worm, but a caterpillar).
The caterpillar of Alés led Pasteur from microbiology to veterinary science to medicine… When Pasteur revolutionized the science of his era by discovering the germs and their role, it was only natural that he should become interested in medicine and hygiene.
At this point, Pasteur had essentially completed his transition from physics to biology and medicine. I won’t discuss his later work on the use of antiseptics in surgery, pasteurization, anthrax infection in sheep, or the development of a rabies vaccine. Debré summarizes,
In his last studies, Pasteur recalled that he had started out as a chemist. First in the laboratory of the rue d’Ulm and then in his Institute, his ultimate experiments indicate that he was trying to understand how the same microbe can either kill a person or stimulate his or her resistance. This is where bacteriology merged into immunology. Pasteur brought these neighboring disciplines together. Understanding the role of the molecules, the toxins, and the antitoxins involved both chemistry and biology.
So what do I conclude about Pasteur’s transition from the physical to the biological sciences? It wasn’t part of a long-range plan. Nor was it primarily motivated by the desire to help the sick, at least initially. I see two key points. First, the rotation of polarized light when passed through an organic substance led him naturally from physics to biology; scientific problems don’t always respect academic boundaries. Second, requests to address industrial problems further accelerated this transition, and those problems happened to be biological in nature. There seems to be a lot of chance involved in this transition (I think there often is for many scientists). But, as Pasteur famously said, chance favors the prepared mind
 
 
https://www.youtube.com/watch?v=OXdbQ1JkX7c
 

 https://www.youtube.com/watch?v=1lLNZQVPpQA

Friday, November 24, 2023

The Deadly Rise of Anti-Science

The Deadly Rise of Anti-Science, by Peter Hotez, superimposed on Intermediate Physics for Medicine and Biology.
The Deadly Rise of Anti-Science,
by Peter Hotez.
This week I read The Deadly Rise of Anti-Science: A Scientist’s Warning, by Peter Hotez. Every American should read this book. In his introductory chapter, Hotez writes
This is a dark and tragic story of how a significant segment of the population of the United States suddenly, defiantly, and without precedent turned against biomedical science and scientists. I detail how anti-science became a dominant force in the United States, resulting in the deaths of thousands of Americans in 2021 and into 2022, and why this situation presents a national emergency. I explain why anti-science aggression will not end with the COVID-19 pandemic. I believe we must counteract it now, before something irreparable happens to set the country on a course of inexorable decline…

The consequences are shocking: as I will detail, more than 200,000 Americans needlessly lost their lives because they refused a COVID-19 vaccine and succumbed to the virus. Their lives could have been saved had they accepted the overwhelming scientific evidence for the effectiveness and safety of COVID-19 immunization or the warnings from the community of biomedical scientists and public health experts about the dangers of remaining unvaccinated. Ultimately, this such public defiance of science became a leading killer of middle-aged and older Americans, more than gun violence, terrorism, nuclear proliferation, cyberattacks or other major societal threats.
Where did this 200,000 number come from? On page 2 of Intermediate Physics for Medicine and Biology, Russ Hobbie and I claim that
One valuable skill in physics is the ability to make order-of-magnitude estimates, meaning to calculate something approximately right.

Hotez gives a classic example of estimation when deriving the 200,000 number. First, he notes that 245,000 Americans died of covid between May 1 and December 31, 2021. Covid arrived in the United States in early 2020, but vaccines did not become widely available until mid 2021. Actually, the vaccines were ready in early 2021 (I had my first dose on March 20), but May 1 was the date when the vaccine was available to everyone. During the second half of 2021, about 80% of Americans who died of covid were unvaccinated. So, Hotez multiplies 245,000 by 0.8 to get 196,000 unvaccinated deaths. After rounding this off to one significant figure, this is where he gets the number 200,000.

There are a few caveats. On the one hand, our estimate may be too high. The vaccine is not perfect. If all of the 200,000 unvaccinated people who died would have gotten the vaccine, some of them would still have perished from covid. If we take the vaccine as being 90% effective against death, we would multiple 196,000 times 0.9 to get 176,400. On the other hand, our estimate may be too low. Covid did not end on January 1, 2022. In fact, the omicron variant swept the country that winter and at its peak over 2000 people died of covid each day. So, the total covid deaths since the vaccine became available—the starting point of our calculation—is certainly higher than 245,000.

As Hotez points out, other researchers have also estimated the number of unnecessary covid deaths, using slightly different assumptions, and all the results are roughly consistent, around 200,000. (Hotez’s book appears to have been written in mid-to-late 2022; I suspect the long tail of covid deaths since then would not make much difference to this estimation, but I’m not sure.) 

In the spirit of an order-of-magnitude estimate, one should not place too great an emphasis on the precise number. It was certainly more than twenty thousand and it was without a doubt less than two million. I doubt we’ll ever know if the “true” amount is 187,000 or 224,000 or any other specific value. But we can say with confidence that about a couple hundred thousand Americans died unnecessarily because people were not vaccinated. Hotez concludes

That 200,000 unvaccinated Americans gave up their lives needlessly through shunning COVID-19 vaccines can and should haunt our nation for a long time to come.

Infectious disease scientists such as Peter Hotez, Tony Faucci, and others are true American heroes. That far-right politicians and journalists vilify these researchers is despicable and disgusting. We all owe these scientists so much. Last Monday was “Public Health Thank You Day” and yesterday was Thanksgiving. I can think of no one more deserving of our thanks than the scientists who led the effort to vaccinate America against covid. 

Why Science Isn’t Up for Debate, with Peter Hotez.

https://www.youtube.com/watch?v=PbGfeksduGE

Friday, May 19, 2023

Breathless

Breathless: The Scientific Race to Defeat a Deadly Virus, by David Quammen, superimposed on Intermediate Physics for Medicine and Biology.
Breathless,
by David Quammen.
Whenever David Quammen has a new book, I put it on my “to read” list. Recently I finished his latest: Breathless: The Scientific Race to Defeat a Deadly Virus. Here’s the opening paragraph:
To some people it wasn’t surprising, the advent of this pandemic, merely shocking in the way a grim inevitability can shock. Those unsurprised people were infectious disease scientists. They had for decades seen such an event coming, like a small, dark dot on the horizon of western Nebraska, rumbling toward us at indeterminable speed and with indeterminable force, like a runaway chicken truck or an eighteen-wheeler loaded with rolled steel. The agent of the next catastrophe, they knew, would almost certainly be a virus. Not a bacterium as with bubonic plague, not some brain-eating fungus, not an elaborate protozoan of the sort that cause malaria. No, a virus—and, more specifically, it would be a “novel” virus, meaning not new to the world but newly recognized as infecting humans.
Quammen—a national treasure—is writing about covid (or, to use its official name, SARS-CoV-2). The coronavirus pandemic did not startle him; he almost predicted it in his earlier book Spillover. Quammen’s book Breathless is to tracing the origins and variants of covid as Walter Isaacson’s book The Code Breaker is to developing a vaccine for covid: required reading to understand what we’ve all been through the last three years. (And what I went through last month with my first case of covid, but I’m healthy now and feeling fine.)

Breathless describes the scientists who developed amazing software to analyze the virus’s genome, such as Áine O’Toole’s genomic pipeline PANGOLIN. Intermediate Physics for Medicine and Biology doesn’t discuss computational genomics, but at the heart of IPMB is the idea that you can combine a hard science like computer programming with a biological science like genomics to gain more information about, and insight into, biology and medicine. Quammen interviewed O’Toole about her experience writing the PANGOLIN program (“O’Toole stayed up late one night, and the next morning, there it was.”). But he didn’t interview just her. He talked to 96 heroic scientists and medical doctors who sought to understand covid, from those I’ve never heard of such as O’Toole to those we all are familiar with such as the brilliant Anthony Fauci. These interviews give the book credibility, especially given all the covid conspiracy theories and anti-vaccine nonsense that floats around the internet these days.

For anyone who may doubt the reality of evolution, I challenge you to try making sense of covid variants without it. Quammen takes us through the list: Alpha, Beta, Gamma, and the frightening Delta.
And after Delta, we knew, would come something else. The Greek alphabet contains twenty-four letters; at that point, the WHO [World Health Organization] list of variants only went up to mu. A virus will always and continually mutate, as I’ve noted, and the more individuals it infects, the more mutations it will produce. The more mutations, the more chances to improve its Darwinian success. Natural selection will act on it, eliminating waste, eliminating ineptitude, carving variation like a block of Carrara marble at the hands of Michelangelo, finding beautiful shapes, preserving the fittest. Evolution will happen. That’s not a variable, it’s a constant.
The latest variant, Omicron, seems to have appeared just as Quammen was finishing his book.
Omicron’s panoply of mutations reflects a period of active, extensive evolution—because the mutations not only occurred but they were preserved, within the lineage, suggesting they offered adaptive value.
One of the most interesting questions addressed in Breathless is the source of covid. Was it a lab accident, a spillover from an animal host (called a zoonotic event), or a malevolent attempt at biological warfare? Quammen doesn’t provide a definitive answer, but he favors the conclusions reached in a review article written by a group of prominent virologists led by Eddie Holmes.
Yes, Holmes and his coauthors agreed, the possibility of a lab accident can’t be entirely dismissed. Furthermore, that hypothesis may be nearly impossible to disprove. But it’s “highly unlikely,” they judged, “relative to the numerous and repeated human-animal contacts that occur routinely in the wildlife trade.” Failure to investigate that zoonotic dimension, with collaborative studies, crossing borders between countries and boundaries between species, would leave this pandemic festering and the world still very vulnerable to the next one.
Run, do not walk, to your library or bookstore and get Breathless. You need to read this book. Take special heed of Quammen’s alarming, disturbing, terrifying last sentence.
There are many more fearsome viruses where SARS-CoV-2 came from, wherever that was.

 A conversation with author and journalist David Quammen.

https://www.youtube.com/watch?v=jsREp6XI0nY

Friday, March 3, 2023

Cobalt Blues: The Story of Leonard Grimmett, the Man Behind the First Cobalt-60 Unit in the United States

Cobalt Blues,
by Peter Almond.
I recently read Cobalt Blues: The Story of Leonard Grimmett, the Man Behind the First Cobalt-60 Unit in the United States (Springer, 2013), written by Peter Almond. The treatment of cancer using the isotope cobalt-60 is now obsolete, but in the era just after World War II it was cutting-edge technology. In his prologue, Almond writes
[The British medical physicist Leonard George] Grimmett was an expert in the use of radium to treat cancer and in the safe handling and measurement of radiation and radioactive materials in clinical situations. He had spent the best part of his career devising better, safer, and more efficient ways to treat cancer with radiation and he remained in England during [World War II]... Then in 1948 while working for UNESCO in Paris he received an offer he could not refuse the, “…post as physicist to a new ‘Cancer Research Institute and Atomic Center’ in The University of Texas”, one of the original universities in the ORINS [Oak Ridge Institute of Nuclear Studies] consortium. Thus was set in motion the events that would lead Grimmett to Houston, Texas and to be the first person to publish, in 1950, the design of a cobalt-60 radiation therapy unit for the treatment of cancer. For the next 25 years cobalt-60 units would be the mainstay of cancer radiation therapy, treating millions of patients worldwide. Grimmett, however, would not live to see the completion of his work. This is his story.
Grimmett is a fascinating guy. As a young boy he learned to play the piano and was quite good. “He had worked his way through college playing for the silent movies, but with the advent of the ‘talkies,’ he had lost his income. He went to work at Westminster Hospital.” At Westminster and other hospitals he helped develop cancer treatment machines using radium, and later he established the medical physics program at the renowned M. D. Anderson Cancer Center. But he had other talents. He was a pilot, a scriptwriter, a gemologist, and jeweler. He’s remembered today primarily for developing a cobalt-60 therapy machine. Almond writes
It is not known for sure who first had the idea of replacing the radium in teletherapy units with a more suitable and less-expensive artificial radioactive substance. Grimmett, however, had been thinking about it for some years before he went to Houston, and a case can be made that he was the first.

What motivated him to use cobalt? “What Grimmett was looking for was an artificial radioactive isotope with gamma ray energies of 1–5 MeV with as long a half-life as possible that could be made in large quantities at a reasonable price.” He considered using sodium-24 for therapy. After 24Na beta decays it emits two gamma rays with energies of 4.1 and 1.4 MeV (see Fig. 17.9 of Intermediate Physics for Medicine and Biology). However, the half-life of 24Na is only 15 hours. 

The idea that cobalt-60 might be a suitable replacement for radium first occurred to Grimmett while he was reading Physical Review in an air-raid shelter during World War II… Later, after the war, he would have read the paper by J. S. Mitchell in the December 1946 issue of the British Journal of Radiology [82]. This is often cited as the paper that initiated the cobalt-60 era. Mitchell specifically mentions cobalt-60 as a replacement for radium beam therapy, and he gave the half-life as 5.3 years and the gamma ray energies as 1.3 and 1.1 MeV. He also reported that it could be produced in “the pile” (nuclear reactor).
Why did Almond title his book Cobalt Blues? Grimmett had trouble obtaining the needed cobalt-60. It is a by-product of nuclear reactors. He first tried the reactor at Oak Ridge, but ended up getting it from a reactor on Chalk River in Canada. Incidentally, the book cover of Cobalt Blues is a lovely cobalt blue.

Grimmett was not the only person trying to use cobalt-60 to treat cancer. Almond briefly describes the other groups, including one in Canada by Harold Johns, and tries to sort out the various priority claims.

Unfortunately, Grimmett died unexpectedly and never saw his unit in use. His obituary in the Houston Chronicle begins

Doctor Grimmett, Cancer Expert, Dies Suddenly 
Dr. Leonard G. Grimmett, 49, eminent physicist whose work in cancer research at M.D. Anderson Hospital, opened a whole new field of treatment of cancer, died of a heart attack at 1:10 a.m. Sunday at his home, 3238 Ewing.
I enjoyed Almond’s book. I learned much about the early years of the M. D. Anderson Cancer Center and about the issues that must be considered when building radiation therapy units. Readers of IPMB will find Cobalt Blues fascinating.

Friday, January 20, 2023

The Invisible Rainbow

The Invisible Rainbow,
by Arthur Firstenberg.
Over Christmas break, I read The Invisible Rainbow: A History of Electricity and Life, by Arthur Firstenberg. What can I say about such a book? First, if the conclusions in my own book—Are Electromagnetic Fields Making Me Ill? How Electricity and Magnetism Affect Our Health—are true, then everything Firstenberg writes about in his book is false. We disagree about the health risks posed by electromagnetic fields.

Firstenberg covers a wide range of issues in The Invisible Rainbow and let me begin by admitting that I’m not an expert in all of these subjects. For instance, I don’t know much about infectious diseases, such as influenza, and I’m not particularly knowledgeable about viruses in general. However, the Centers of Disease Control and Prevention gathers input from authorities on these topics and here is what it says about the causes of the flu.
“Most experts believe that flu viruses spread mainly by tiny droplets made when people with flu cough, sneeze, or talk. These droplets can land in the mouths or noses of people who are nearby. Less often, a person might get flu by touching a surface or object that has flu virus on it and then touching their own mouth, nose or possibly their eyes.”
Firstenberg, on the other hand, claims that the flu is an electrical disease not caused by a virus spread from person to person. He writes
In 1889, power line harmonic radiation began. From that year forward the earth’s magnetic field bore the imprint of power line frequencies and their harmonics. In that year, exactly, the natural magnetic activity of the earth began to be suppressed. This has affected all life on earth. The power line age was ushered in by the 1889 pandemic of influenza.

In 1918, the radio era began. It began with the building of hundreds of powerful radio stations at [low] and [very low] frequencies, the frequencies guaranteed to most alter the magnetosphere. The radio era was ushered in by the Spanish influenza pandemic of 1918.

In 1957, the radar era began. It began with the building of hundreds of powerful early warning radar stations that littered the high latitudes of the northern hemisphere, hurling millions of watts of microwave energy skyward. Low-frequency components of these waves rode on magnetic field lines to the southern hemisphere, polluting it as well. The radar era was ushered in by the Asian flu pandemic of 1957.

In 1968, the satellite era began. It began with the launch of dozens of satellites whose broadcast power was relatively weak. But since they were already in the magnetosphere, they had as big an effect on it as the small amount of radiation that managed to enter it from sources on the ground. The satellite era was ushered in by the Hong Kong flu pandemic of 1968.
No mechanism is offered to explain how electromagnetic fields might cause a flu pandemic. No distinction is made between power line frequency (60 Hz) and radio frequency (MHz) radiation, although their physical effects are distinct. No estimation of “dose” (the distribution and magnitude of electric and magnetic field exposure) is provided. No randomized, controlled, double-blind studies are cited. He merely lists anecdotal evidence and coincidences.

Perhaps we could just ignore such dubious claims, except that The Invisible Rainbow is often quoted as evidence supporting the assertion that the Covid pandemic is somehow related to 5G cell phone radiation. Why would anyone get a Covid vaccine if they erroneously believe that the disease is caused by electromagnetic radiation? Such misinformation is dangerous to us all.

Firstenberg describes old studies without critical analysis. For instance, on page 73 he writes
In 1923, Vernon Blackman, an agricultural researcher at Imperial College in England, found in field experiments that electric currents averaging less than one milliampere (one thousandth of an ampere) per acre increased the yields of several types of crops by twenty percent. The current passing through each plant, he calculated, was only about 100 picoamperes.
One hundred picoamperes is 10−10 amperes. We aren’t told what the crops were, but let’s assume they consist of a thin stalk that I’ll estimate has a cross-sectional area of one square centimeter (10−4 m2). That means the current density would be 10−6 A/m2. Furthermore, let’s assume an electrical conductivity on the order of saline, 1 S/m. The resulting electric field is 10−6 V/m, or one microvolt per meter. This is far less than the electric field that always surrounds us and is caused by thermal fluctuations. The proposition that one milliamp per acre has such an effect defies credulity.

Previously in this blog I have written about Robert Becker—author of The Body Electric—where I dismiss his assertions that nerve axons are semiconductors and that the myelin surrounding some nerve axons carries steady currents. Firstenberg quotes Becker to support these ideas.
It was the Schwann cells, Becker concluded—the myelin-containing glial cells—and not the neurons they surrounded, that carried the currents that determined growth and healing. And in a much earlier study Becker had already shown that the DC currents that flow along salamander legs, and presumably along the limbs and bodies of all higher animals, are of semiconducting type.
Firstenberg believes cell phones cause many health hazards. On page 176, he writes
[Allan Frey] discovered the blood-brain barrier effect, an alarming damage to the protective shield that keeps bacteria, viruses, and toxic chemicals out of the brain—damage that occurs at levels of radiation that are much lower than what is emitted by cell phones today.
In Are Electromagnetic Fields Making Me Ill? I discuss a recent review by Anne Perrin and collaborators, which considered many articles about electromagnetic fields and the blood-brain barrier, and concluded that the literature provides “no convincing proof of deleterious effects of [radio frequency radiation] on the integrity of the [blood-brain barrier]” (Comptes Rendus Physique, Volume 11, Pages 602–612, 2010).

On Page 255, Firstenberg discusses an epidemiological study that found no relationship between cell phones and cancer.
[A] study, published in the Journal of the National Cancer Institute, was titled “Cellular Telephone Use and Cancer Risks: Update of a Nationwide Danish Cohort.” It claimed to come to its conclusions after an examination of the medical records of over 420,000 Danish cell phone users and non-users over a period of two decades. It was clear to me that something was wrong with the statistics.
Firstenberg claims he could not follow up on his suspicions because the authors would not share their data. Recently Martin Röösli and coworkers performed a meta-analysis of many epidemiological studies (including the Danish one), and concluded that they "do not suggest increased brain or salivary gland tumor risk with [mobile phone] use” (Annual Review of Public Health, Volume 40, Pages 221–238, 2019).

I could go on. Firstenberg believes electromagnetic fields are responsible for diabetes, heart disease, and cancer. His views on the mechanism of hearing are at odds with what most researchers believe. He thinks the “qi” that supposedly underlies acupuncture is electric in nature (similar to Becker’s view).

Readers of Intermediate Physics for Medicine and Biology will find little physics in The Invisible Rainbow. One skill that Russ Hobbie and I stress is the ability to make order-of-magnitude estimations of effects, and I don’t see Firstenberg doing that.

I do have some sympathy for Firstenberg. He’s been plagued by a variety of symptoms that he associates with electromagnetic hypersensitivity. I have no doubt his suffering is real. Yet, the evidence from controlled, double-blind experiments does not support his claim that electromagnetic radiation causes his illness. Rubin et al. reviewed many experiments and concluded that “at present, there is no reliable evidence to suggest that people with [idiopathic environmental intolerance attributed to electromagnetic fields] experience unusual physiological reactions as a result of exposure to [electromagnetic fields]. This supports suggestions that [electromagnetic fields are] not the main cause of their ill health” (Bioelectromagnetics, Volume 32, Pages 593–609, 2011). The World Health Organization concludes
EHS [electromagnetic hypersensitivity] is characterized by a variety of non-specific symptoms that differ from individual to individual. The symptoms are certainly real and can vary widely in their severity. Whatever its cause, EHS can be a disabling problem for the affected individual. EHS has no clear diagnostic criteria and there is no scientific basis to link EHS symptoms to EMF [electromagnetic field] exposure. Further, EHS is not a medical diagnosis, nor is it clear that it represents a single medical problem.

I put Arthur Firstenberg in the same category as Martin Pall, Robert Becker, Paul Brodeur, and Devra Davis: well-meaning scientific mavericks whose hypotheses have not been confirmed. The Invisible Rainbow is an interesting read, but beware: as science it is flawed.

 Listen to Arthur Firstenberg, author of The Invisible Rainbow, answer questions about the hidden dangers of wireless and cellular phone radiation (I post this video so you can hear his side of the story, not because I agree with him).

https://www.youtube.com/watch?v=jyfa454Akm0

Friday, November 18, 2022

Randy Travis

Forever and Ever, Amen,
by Randy Travis.
I’m a big fan of country music. After all, I was a graduate student in Music City: Nashville. I used to ride my bike down to 16th Avenue by the original Country Music Hall of Fame and listen to the up-and-coming singers perform on the street. During the late 1980s, just as I was finishing my dissertation, the biggest country star was Randy Travis. His debut album, Storms of Life, appeared in 1986, and for the next several years he dominated the country music scene.

I recently listened to Travis’s 2019 autobiography, Forever and Ever, Amen. It tells the story of his glory years, but also covers his troubled youth, his time as the singing cook at the Nashville Palace nightclub, and his tragic health problems.

In 2013 Travis was incapacitated by a massive stroke. The most common type of stroke occurs when a clot blocks the flow of blood to part of the brain. Stroke is ranked as the fifth leading cause of death in the United States; every four minutes someone dies of a stroke. Many of those that survive have brain damage. Following his stroke, Travis suffered from limited use of his right hand and severe speech impairment.

The question for readers of Intermediate Physics for Medicine and Biology is, how can physics address stroke? Two applications that are important for stroke diagnosis and treatment are Diffusion Tensor Imaging and Transcranial Magnetic Stimulation. In diffusion tensor imaging, diffusion in the brain is measured using strong gradient magnetic fields applied during magnetic resonance imaging. Diffusion is anisotropic in the brain’s white matter, with water diffusing faster parallel to nerve axon tracts than perpendicular to them. In IPMB, Russ Hobbie and I write
Diffusion is usually greater along the direction of the nerve or muscle fibers. Since the orientation of the fibers changes throughout the body, the elements of the diffusion tensor vary as well. However, some features of the diffusion tensor, such as the trace (see Prob. 49), are independent of the fiber direction, and are particularly useful when monitoring diffusion in anisotropic tissue, such as the white matter of the brain. In addition, the diffusion tensor contains information about the fiber direction, allowing one to map fiber tract trajectories noninvasively using MRI (Basser et al. 2000).
Diffusion can serve as a biomarker to diagnose stroke and to monitor recovery.

Transcranial magnetic stimulation (TMS) is a method to excite neurons in the brain. Russ and I describe it as
Magnetic stimulation can be used to diagnose central nervous system diseases that slow the conduction velocity in motor nerves without changing the conduction velocity in sensory nerves (Hallett and Cohen 1989). It could be used to monitor motor nerves during spinal cord surgery, and to map motor brain function. Because TMS is noninvasive and nearly painless, it can be used to study learning and plasticity (changes in brain organization over time; Wassermannet al. 2008). Recently, researchers have suggested that repetitive TMS might be useful for treating disorders such as depression (O’Reardon et al. 2007) and Alzheimer’s disease (Freitas et al. 2011).

You could add stroke to the list of disorders that might benefit from repetitive transcranial magnetic stimulation. I say “might” because the technique is still being studied as a stroke therapy, but any method that influences brain plasticity has at least the potential to be useful to stroke victims.

Now, almost ten years after his stroke, Travis continues to slowly recover. Although he has not yet been able to return to a singing career, in 2016 he did lead his fans in singing Amazing Grace when he was inducted into the Country Music Hall of Fame. His autobiography is captivating and inspiring. The courage and tenacity of stroke victims should motivate us all to use our science to address this devastating illness.

Randy Travis sings Amazing Grace at his induction into the Country Music Hall of Fame.

https://www.youtube.com/watch?v=11bgiJH1zhA


Randy Travis singing his signature song, Forever and Ever, Amen.

https://www.youtube.com/watch?v=KtKXc_v2iLE


Randy Travis singing Storms of Life.

https://www.youtube.com/watch?v=piTt6zu2FKs