Friday, December 3, 2010

Physical Biology of the Cell

Physical Biology of the Cell, by Phillips, Kondev, and Theriot, superimposed on Intermediate Physics for Medicine and Biology.
Physical Biology of the Cell,
by Phillips, Kondev, and Theriot.
I spent some time this week looking over the recently published textbook Physical Biology of the Cell, by Rob Phillips, Jane Kondev, and Julie Theriot. In some ways this book is a competitor of the 4th edition of Intermediate Physics for Medicine and Biology (it is always good to know your competition). Bernard Chasan reviewed Physical Biology of the Cell in the November 2010 issue of the American Journal of Physics.
The authors of this book are, in a very real sense, missionaries. They want to convince a wide audience to share their enthusiasm for and commitment to a more quantitative and scientifically rigorous approach to cell biology than is normally encountered in the teaching literature.

To achieve this goal, they set out a program of quantitative model building based on physical principles…. What the authors describe (awkwardly but evocatively) as the mathematizing of the semiqualitative models of cell biology (referred to as “cartoons” in some circles) has now become central to cell biology—as evidenced by a half a dozen recent texts and the relatively new and thriving discipline of systems biology. The work being reviewed is the latest and most comprehensive attempt to foster and advocate for this approach…

At the center of their approach is the art of model making—well presented with the aid of some excellent figures, which show the choices needed to model proteins, as one example. The main point is that modeling requires a simplifying choice, which emphasizes one view of the protein and essentially ignores others. If it suits your purposes to model the protein as a collection of hydrophobic and hydrophilic amino acid residues—a good model for protein folding—then you cannot at the same time consider the protein as a two state system.
After skimming through Physical Biology of the Cell (I wish I had time to read it thoroughly), I have several observations.
  1. The second half of Intermediate Physics for Medicine and Biology (IPMB) is about clinical medical physics: imaging and therapy. None of this appears in Physical Biology of the Cell (PBC). Also, in IPMB Russ Hobbie and I steer clear of molecular biology, saying in the preface that “molecular biophysics has been almost completely ignored: excellent texts already exist, and this is not our area of expertise.” PBC is all molecular and cellular. The main overlap between the two books is several chapters in PBC that cover similar topics as are in the first half of IPMB. So, I guess IPMB and PBC are not really in direct competition. However, if I was Phil Nelson, author of Biological Physics: Energy, Information, Life, I might be concerned about market share.
  2. PBC is illustrated by Nigel Orme. Let me be frank; Orme’s drawings are much better than what we have in IPMB. One thing I like about PBC is that you can skip the text altogether and just look at the pictures, and still learn the gist of the subject. Figure 1.4 showing the genetic code reminds me of the sort of graphics that Edward Tufte promotes in The Visual Display of Quantitative Information. The authors of PBC state in the acknowledgments “this book would never have achieved its present incarnation without the close and expert collaboration of our gifted illustrator, Nigel Orme, who is responsible for the clarity and visual appeal of the more than 550 figures found in these pages, as well as the overall design of the book.” As generous as this tribute is, it may be an understatement. Then, just when I thought the artwork couldn’t get any better, I found that PBC contains several beautiful figures contributed by David Goodsell, author of The Machinery of Life.
  3. In the 4th edition of IPMB, Russ and I added an initial section exploring the relative size of biological objects. In PBC, a similar discussion fills the entire Chapter 2. There is lots of numerical estimating in this chapter, reminding me of the Bionumbers website. Chapter 3 looks at different temporal scales, which is more difficult to show visually than spatial scales (Russ and I didn’t try), although Orme’s drawings do a pretty good job. Chapter 4 of PBC looks at the many model systems used in biology, with an eye toward history (Mendel’s pea plants, hemoglobin and the structure of a protein, the bacteriophage in genetics, etc.). Great reading.
  4. Some subjects—such as diffusion, fluid dynamics, thermodynamics, and bioelectricity—are covered in both PBC and IPMB. Which book explains these topics better? Obviously I am biased, but I suggest that Russ and I develop the physics in a more detailed and systematic way, starting from the fundamentals, whereas Phillips, Kondev and Theriot present the physics rather quickly, and then apply it to many interesting biological applications. I would say that PBC does for molecular and cellular biology what Air and Water by Mark Denny does for physiology: use physics and math to explain biological concepts quantitatively. Russ and I, on the other hand, teach physics using biological examples. The difference is more about approach, tone, and point-of-view than about substance. The reader can look at both books and draw their own conclusions.
  5. PBC has a few nice homework problems, but I prefer IPMB’s more extensive collection. The student learns more by doing than by reading.
  6. The final chapter in PBC, “Wither Physical Biology,” is an excellent summary of the “the role of quantitative analysis in the study of living matter.” Anyone working at the interface between physics and biology must read these ten pages.
Phillips, Kondev, and Theriot ought to have the last word, so I will finish this blog entry by quoting PBC’s eloquent closing paragraph.
The act of writing this book has convinced each of us that the study of living matter is one of the most exciting frontiers in human thought. Just as the makings of the large scale universe are being revealed by ever more impressive telescopes, living matter is now being viewed in ways that were once as unimaginable as was going to the Moon. Despite the muscle-enhancing weight of this book, we feel that we have only scratched the surface of the rich and varied applications of physical reasoning to biological problems. Our overall goal has been to communicate a style of thinking about problems where we have done our best to illustrate the power of the style using examples chosen from biological systems that are well defined and usually well studied from a biological perspective. As science moves forward into the twenty-first century, it is our greatest hope that synthetic approaches for understanding the natural world from biological, physical, chemical, and mathematical perspectives simultaneously will enrich all of these fields and illuminate the world around us. We can only hope the reader has at least a fraction of the pleasure in answering that charge as we have had in attempting to describe the physical biology of the cell.

3 comments:

  1. And now for the lighter side, learn about how the heart works here: http://www.youtube.com/watch?v=upctPUa6RhA&feature=email. My favorite was always Ralph Malph.

    ReplyDelete
  2. Hi Dr. Roth,

    The bottom line is, you can not learn everything you need from one text. As Dr. Efimov told me only today 'Read Read Read!' Read everything from the basics in texts to current papers in the literature. My reading for the weekend, 'Cardiovascular Physiology' by Mohrman and Heller. (Inbetween I'll sing 'pump your blood.' Potsy does a great job!)

    ReplyDelete