Friday, November 28, 2008

Adrian Kantrowitz (1918-2008)

Last week heart surgeon and pacemaker pioneer Andrian Kantrowitz died in Ann Arbor, Michigan. Among his many roles, Kantrowitz was an Adjunct Professor in the Department of Physics here at Oakland University where I work. Soon after I arrived at OU in 1998, Emeritus Professor Norm Tepley and I visited Kantrowitz’s company L.VAD Technology in Detroit, which makes a left ventricular assist device that helps the heart pump blood. In February 2005 I invited Kantrowitz to give our weekly physics colloquium. At the time his health was already fragile and he gave his lecture sitting down. But it was an excellent talk to one of the largest crowds we ever had at our colloquium series.
Machines in Our Hearts: The Cardiac Pacemaker, the Implantable Defibrillator, and American Health Care, by Kirk Jeffrey, superimposed on Intermediate Physics for Medicine and Biology.
Machines in Our Hearts: The Cardiac Pacemaker,
the Implantable Defibrillator, and American Health Care,
by Kirk Jeffrey.

Kantrowitz had an inspirational life story. As a young man, he served as a battalion surgeon in World War Two. He later performed the first heart transplant in the United States. He also played a role in the early development of the pacemaker, a topic discussed in Chapter 7 of the 4th edition of Intermediate Physics for Medicine and Biology. Kirk Jeffrey, in his book 
Machines in Our Hearts: The Cardiac Pacemaker, the Implantable Defibrillator, and American Health Care, wrote
GE [General Electric] had developed an implantable pacemaker in its electronics laboratory in cooperation with heart surgeon Adrian Kantrowitz of Maimonides Hospital in Brooklyn. This project began in 1960, apparently in response to the announcement of the Chardack-Greatbatch pacemaker. The initial model was implanted in May 1961 and, as was common with these early devices, the designers made improvements based on the experience of the early patients.

The GE pacemakers had one remarkable technological feature—an external control unit that communicated with the implanted generator by magnetic induction. When taped to the skin on the patient's abdomen, the controller enabled the physician to set the pacing rate anywhere between 64 and 120 beats per minute. Kantrowitz viewed rate control as a means to safeguard the elderly patient.
You can learn more about Adrian Kantrowitz from obituaries in the New York Times, the Washington Post and the Los Angeles Times.

No comments:

Post a Comment