Glimpses of Creatures in their Physical Worlds, by Steven Vogel. |
Vogel’s contributions to biomechanics have had two admirable objectives. In Life in Moving Fluids (1981), Life’s Devices (1988), Vital Circuits (1992), Prime Mover (2001) and Comparative Biomechanics (2003), his goal is to explain the mechanics of biology to a general audience. If you want to know how fish swim, fleas jump and bats fly, or why hardening of your arteries is a bad thing, them dip into these sources; you will come away both informed and amused…I’ll put reading Glimpses on my to do list, maybe during the semester break.
All too often, biologists observe only what they are prepared to see. Vogel’s second objective is therefore to expand their perspectives by conjuring up and carefully analyzing systems that might be… For example, dogs don’t sweat as humans do. Instead, they pant, evaporating water from their respirator tracts and expelling the resulting warm, moist air with each breath. But panting requires the repeated contraction of chest muscles, which adds to the heat the animal desires to loss. Could there be a better way?...
To find out, read Glimpses of Creatures in Their Physical Worlds. Here, as in Cats’ Paws and Catapults (1998), Vogel takes a decidedly nontraditional look at biology, unleashing his talent for unbridled speculation. The 12 chapters of Glimpses, which began as a series of essays in the Journal of Biosciences, have been revised and updated. They cover topics that range from the ballistics of seeds (plants use both catapults and cannons to launch their propagules) to the breathing apparatus of diving spiders (tiny hairs on the body take advantage of surface tension to maintain an airspace into which oxygen can flow), with stops along the way to explore the efficiency of man-made and natural pumps, the twist-to-bend ratios of daffodils in the breeze, and the physics of cow tipping…
If what you desire in a readable science book is food for thought, Glimpses of Creatures in Their Physical Worlds provides a feast. Biologists, engineers and physicists—indeed, anyone with curiosity about the natural world—will revel in this smorgasbord of biomechanical ideas.
If you get a copy of American Scientist so you can read Denny’s entire review, don’t miss another review in the same issue about a new edition (with notes and commentary) of the classic Flatland by Edwin Abbott. Flatland is a favorite of mine, and I agree with Colin Adams who says in his review: “In the pantheon of popular books about mathematics, one would be hard-pressed to name another that has lasted so long in popularity or had such a dramatic impact.”