Friday, July 7, 2017

Bioelectricity: A Quantitative Approach

The best way to learn about bioelectricity is to read Chapters 6-9 in Intermediate Physics for Medicine and Biology. But suppose, for some odd and incomprehensible reason, you seek an alternative to IPMB. Another option is to enroll in Roger Barr’s MOOC (massive open online course) Bioelectricity: A Quantitative Approach through Coursera.

I enrolled and am going through the course (if you don't want a certificate, which I don't need, the course is free). The website says the course begins July 17, but all the videos and course materials are accessible now. I'm curious to know what is going to happen in ten days.

Below is the summary from an article about this course, published after Barr first taught the MOOC in 2012.
After only three months for planning and development, Duke University and Dr. Roger Barr successfully delivered a challenging open online course via Coursera to thousands of students around the world. Lessons learned from this experience have contributed to the strategic goals of Duke’s Online Initiatives.
  • Over 600 hours of effort were required to build and deliver the course, including more than 420 hours of effort by the instructor. 
  • The course launched on schedule and was successfully completed by hundreds of students. Many hundreds more continued to participate in other ways. The number of students actively participating plateaued at around 1000 per week. 
  • Over 12,000 students enrolled, representing more than 100 countries. Approximately 8,000 of these students logged in during the first week. 
  • At the time of enrollment, one-third of enrolled students held less than a four year degree, one-third held a Bachelors or equivalent, and one-third held an advanced degree. 
  • 25% of students who took both Week 1 quizzes successfully completed the course, including 313 students from at least 37 countries. Course completers typically held a Bachelor’s degree or higher; however, at least 10 pre-college students were among those who successfully completed this challenging upper level undergraduate course. 
  • Students who did not complete all requirements cited a lack of time, insufficient math background or having intended to only view the lectures from the outset. Regardless of completion status, many students were primarily seeking enjoyment or educational enrichment.
  • Most students reported a positive learning experience and rated the course highly, including ones who did not complete all requirements 
  • The Coursera platform met the needs of the course in spite of being continuously under development while the course was live. Technical issues reported by the students and instructor were generally minor, of short duration and/or quickly resolved. 
  • Patience, flexibility and resilience on the part of instructor, Coursera students, CIT staff, and Duke University Office of Information Technology media services staff were key elements in the success of this course.
https://www.amazon.com/Bioelectricity-Quantitative-Approach-Robert-Plonsey/dp/0387488642
Barr has published extensively in bioelectricity, particularly about the electrical properties of the heart. My favorites articles are two he wrote with Robert Plonsey in 1984: "Current Flow Patterns in Two-Dimensional Anisotropic Bisyncytia with Normal and Extreme Conductivities". Biophysical Journal 45: 557-571 and "Propagation of Excitation in Idealized Anisotropic Two-Dimensional Tissue". Biophysical Journal 45: 1191-1202. I used Plonsey and Barr’s textbook Bioelectricity: A Quantitative Approach (which the Coursera MOOC is based on) in a graduate bioelectricity class for several semesters, until I decided to base the class entirely on published articles in the scientific literature (something like a journal club).

So far I like the MOOC, although I have only just started. It is the SECOND best way to learn about bioelectricity.


No comments:

Post a Comment