Friday, November 13, 2009

Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles

One of the sources that Russ Hobbie and I cite most often in the 4th Edition of Intermediate Physics for Medicine and Biology is Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, by Robert Eisberg and Robert Resnick. I used the first (1974) edition of this textbook when I was an undergraduate studying physics at the University of Kansas. It was the book where I was first introduced to the ideas of quantum mechanics, to the Schrodinger equation, and to nuclear physics. A second edition was published in 1985, but I can find nothing about a third edition in the last 25 years. Despite it being somewhat out-of-date, I still consider this book to be one of the best sources of information about modern physics. Below is the first paragraph of the preface:
“The basic purpose of this book is to present clear and valid treatments of the properties of almost all the important quantum systems from the point of view of elementary quantum mechanics. Only as much quantum mechanics is developed as is required to accomplish the purpose. Thus we have chosen to emphasize the applications of the theory more than the theory itself. In so doing we hope that the book will be well adapted to the attitudes of contemporary students in a terminal course on the phenomena of quantum physics. As students obtain an insight into the tremendous explanatory power of quantum mechanics, they should be motivated to learn more about the theory. Hence, we hope that the book will be equally well adapted to a course that is to be followed by a more advanced course in formal quantum mechanics.”
I have never taught the modern physics class here at Oakland University, but if I did I would certainly consider using Eisberg and Resnick’s book. When I have taught the undergraduate quantum mechanics class (taken after modern physics) I used another wonderful book, Introduction to Quantum Mechanics by David Griffiths. There are several good quantum mechanics books at the graduate level, but I--a biomedical physicist--have never been asked to teach graduate quantum mechanics. (Are they telling me something?)

Intermediate Physics for Medicine and Biology doesn’t make much use of quantum ideas, except at a very qualitative level. Schrodinger’s equation is only mentioned once (on page 49), and is never written out. The idea of discrete quantum energy levels is introduced in Chapter 3 when we discuss statistical mechanics, and again in Chapter 14 when explaining atomic spectra. However, concepts related to quantization of light are important. For instance, thermal (blackbody) radiation is discussed in Section 14.7 (and is covered elegantly in the first chapter of Eisberg and Resnick) and Compton scattering is analyzed in Sec. 15.4. Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles should provide all the background you will need to understand these and other modern physics topics.

No comments:

Post a Comment