Showing posts sorted by relevance for query Magnet therapy. Sort by date Show all posts
Showing posts sorted by relevance for query Magnet therapy. Sort by date Show all posts

Friday, March 21, 2008

Magnetic Therapy

I’m a skeptic when it comes to “alternative medicine.” Often the claims of alternative medicine conflict with the basic laws of physics—and in the end, physics always wins. In particular, there are many dubious health claims about the biological effects of electric and magnetic fields. For instance, I don’t know of any research supporting the idea that magnets in your shoes or jewelry have health benefits, nor can I think of any plausible mechanism underlying such an effect. Are there companies that really promote such silliness? Go to Google and search for “magnetic therapy” and you’ll find that, indeed, there are.

Voodoo Science:  The Road from Foolishness to Fraud,  by Robert Park, superimposed on Intermediate Physics for Medicine and Biology.
Voodoo Science:
The Road from Foolishness to Fraud,
by Robert Park.
Bob Park is a prominent debunker of bogus alternative medicine claims. He discusses magnetic therapy in his book Voodoo Science: The Road from Foolishness to Fraud.
“Natural” remedies [such as magnetic therapy] are presumed by their proponents to be somehow both safer and more powerful than science-based medicine. Fortunately, most natural medicine is in itself relatively harmless, aside from the financial damage done by paying eighty-nine dollars for a refrigerator magnet... It can, however, become dangerous if it leads people to forego needed medical treatment. Worse, alternative medicine reinforces a sort of upside-down view of how the world works, leaving people vulnerable to predatory quacks.
Another source of useful information is the magazine Skeptical Inquirer. In particular, see the article Magnet Therapy, A Billion-dollar Boondoggleby Bruce Flamm (July 2006), where he claims that there exists a worldwide epidemic of useless magnet therapy. Also, see Stephen Barrett’s article Magnet Therapy: A Skeptical Viewpublished by Quackwatch, Inc., a nonprofit corporation whose purpose is to combat health-related frauds, myths, fads, fallacies, and misconduct. Barrett’s bottom line is that there is no scientific basis to conclude that small, static magnets can relieve pain or influence the course of any disease. In fact, many of today’s products produce no significant magnetic field at or beneath the skins surface.
 
How can you distinguish the legitimate from nonsense? I suspect the layman will have a hard time telling the difference between
magnetic therapy (bogus) and magnetic stimulation (a well-understood technique to excite nerves in the brain). The only way I know to sort out the good from the bad is to educate yourself on the underlying physics as it applies to biology and medicine. One place to start is the 4th edition of Intermediate Physics for Medicine and Biology. Whether you consult our book or another source of information, beware of suspicious claims about the benefits of electric and magnetic fields. Bioelectricity and biomagnetism are vibrant and important fields of study (see Chapters 6–9 of our book), but theres a lot of baloney out there too.

Friday, June 7, 2013

Resource Letter BSSMF-1: Biological Sensing of Static Magnetic Fields

In the October 2012 issue of the American Journal of Physics, physicist Leonard Finegold published “Resource Letter BSSMF-1: Biological Sensing of Static Magnetic Fields” (Volume 80, Pages 851–861). Finegold recommends that a good starting point for mastering the topic of magnetoreception is Kenneth Lohmann’s News and Views article in Nature.
35. “Magnetic-field perception: News and Views Q and A,” K. J. Lohmann, Nature, 464, 1140–1142 (2010). (E) 
I looked it up, and it does indeed provide a well-written summary of the field in a reader-friendly question-and-answer format.

In the 4th edition of Intermediate Physics for Medicine and Biology, Russ Hobbie and I discuss magnetotactic bacteria. We write that
Bacteria in the northern hemisphere have been shown to seek the north pole. Because of the tilt of the earth’s field, they burrow deeper into the environment in which they live. Similar bacteria in the southern hemisphere burrow down by seeking the south pole.
Finegold also reviews this topic. The excerpt reproduced below serves both as an up-date to IPMB and as a sample of the style of an American Journal of Physics resource letter.
Certain bacteria move in response to the earth’s magnetic field (Ref. 35), swimming along the field lines, and have been excellently reviewed (Ref. 36). The “sensing” element is magnetite (an iron oxide) or greigite (an iron sulfide) (Ref. 37). The bacteria would swim toward the boundary between oxygenated and oxygen-poor regions. Until recently, there was the comforting idea that there are two groups of bacteria with opposite sensors, depending on which of the earth’s hemispheres they reside. Alas, both groups have now been found in the same place; it appears that their polarity is correlated with the local redox potential (Ref. 38 and 39). In addition, some bacteria use only the axial property of the field (i.e., they swim both with or against the field direction), whereas others use the vector property (i.e., they swim either with or against the field direction). Details of the behavior have been elucidated by applying magnetic fields to bacteria in a spectrophotometer cuvette, with genetic analysis (Ref. 39).

35. “South-seeking magnetotactic bacteria in the Southern Hemisphere,” R. P. Blakemore, R. B. Frankel, and Ad. J. Kalmijn, Nature 286, 384–385 (1980). (A)

36. “Bacteria that synthesize nano-sized compasses to navigate using Earth’s geomagnetic field,” L. Chen, D. A. Bazylinski, and B. H. Lower, Nature Education Knowledge 1(10), 14 (2010). (I)

37. “The identification and biogeochemical interpretation of fossil magnetotactic bacteria,” R. E. Kopp and J. L. Kirschvink, Earth-Sci. Rev. 86, 42–61 (2008). (A)

38. “South-seeking magnetotactic bacteria in the northern hemisphere,” S. L. Simmons, D. A. Bazylinski, and K. J. Edwards, Science 311, 371–374 (2006). (A)

39. “Characterization of bacterial magnetotactic behaviors by using a magnetospectrophotometry assay,” C. T. Lefevre, T. Song, J. P. Yonnet, and L. F. Wu, Appl. Environ. Microbiol. 75, 3835–3841 (2009). (A)”
Magnetoreception is a field that often stirs debate. Russ and I outline one such debate in IPMB
Kirschvink (1992) proposed a model whereby a magnetosome in a field of 10−4–10−3 T could rotate to open a membrane channel. As an example of the debate that continues in this area, Adair (1991, 1992, 1993, 1994) argued that a magnetic interaction cannot overcome thermal noise in a 60-Hz field of 5 × 10−6 T. However, Polk (1994) argues that more biologically realistic parameters, including a large number of magnetosomes in a cell, could allow an interaction at 2 × 10−6 T.
The key citations in the debate are
Adair, R. (1991) “Constraints on biological effects of weak extremely-low-frequency electromagnetic fields,” Phys. Rev. A, Volume 43, Pages 1039–1048.
Kirschvink, J. L. (1992) “Comment on “Constraints on biological effects of weak extremely-low-frequency electromagnetic fields,” Phys. Rev. A, Volume 46, Pages 2178–2184.
Adair, R. (1992) “Reply to “Comment on ‘Constraints on biological effects of weak extremely-low-frequency electromagnetic fields’,” Phys. Rev. A, Volume 46, Pages 2185–2187.
For those of you who like this sort of thing, here is another example from Finegold’s resource letter. The debate is about, of all things, if cows align themselves in magnetic fields!
A surprising finding is that cattle and deer seem to align themselves in an approximate north-south (geomagnetic) direction. The evidence is from world-wide satellite photographs from Google Earth, supported by ground observations of more than 10,000 animals, and is hard to rebut. The satellite photographs do not have enough resolution to show the direction (north or south) in which the animals face.
72. “Magnetic alignment in grazing and resting cattle and deer,” S. Begall, J. Cerveny, J. Neef, O. Vojtech, and H. Burda, Proc. Natl. Acad. Sci. U.S.A. 105, 13453–13455 (2008). (I)
As Usherwood asks, why on Earth should cattle and deer prefer this alignment? Possible interpretations are that the satellite photographs are made close to noon, so there may be physiological reasons (heating, cooling) for animals to align or to view predators better.
73. “Cattle and deer align north (-north-east),” J. Usherwood, J. Exp. Biol. 212, iv (2009). (E)
Partly to rule out sun compass effects, Burda et al. investigated ruminant alignment under high-voltage (and hence high-current, low-frequency) power lines and found that the geomagnetic north-south alignment was disturbed; the disturbance was correlated with the alternating fields. Such disturbance might instead be because the animals felt protected by (or preferring) the overhead lines or pylons or because of the audible (to humans at least) corona discharge. A good control for this would be to look at ruminants under power lines being repaired, carrying no current; this is difficult to do. The authors ingeniously compared the nonalignment under N-S and E-W trending power lines and found that the nonalignment followed the resultant total magnetic field. Their conclusions have been challenged (Ref. 75), and they have a lively rebuttal (Ref. 76), to which the challengers have replied (Ref. 77). Hence, the initially persuasive evidence, that cattle and deer detect magnetic fields, may need re-examination.

74. “Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants,” H. Burda, S. Begall, J. Cerven, J. Neef, and P. Nemec, Proc. Natl. Acad. Sci. U.S.A. 106, 5708–5713 (2009). (I)
75. “No alignment of cattle along geomagnetic field lines found,” J. Hert, L. Jelinek, L. Pekarek, and A. Pavlicek, J. Comp. Physiol., A 197, 677–682 (2011). (I)
76. “Further support for the alignment of cattle along magnetic field lines: Reply to Hert et al.,” S. Begall, H. Burda, J. Cerveny, O. Gerter, J. Neef-Weisse, and P. Nemec, J. Comp. Physiol. [A] 197, 1127–1133 (2011). (I)
77. “Authors’ Response,” J. Hert, L. Jelinek, L. Pekarek, and A. Pavlicek, J. Comp. Physiol. [A] 197(12), 1135– 1136 (2011). (I) 
Finegold also discusses magnet therapy, a topic I am extremely skeptical about, and that I have discussed before in this blog. He cites his own editorial with Flamm
Magnet therapy,” L. Finegold and B. L. Flamm, Br. Med. J. 332, 4 (2006) (E) 
which concludes
Extraordinary claims demand extraordinary evidence. If there is any healing effect of magnets, it is apparently small since published research, both theoretical and experimental, is weighted heavily against any therapeutic benefit. Patients should be advised that magnet therapy has no proved benefits. If they insist on using a magnetic device they could be advised to buy the cheapest—this will at least alleviate the pain in their wallet.

Friday, March 13, 2015

If You Want Healthy Cows Feed Them Magnets

I saw an article on the internet claiming “If you want healthy cows feed them magnets” and I thought “oh no, not more biomagnetism nonsense.” First magnets in shoes to relieve foot pain, then magnetic bracelets for arthritis, and finally “biomagnetic therapy” for all sorts of disorders; I thought it couldn’t get worse, but feeding magnets to heifers? Really? Sounds like bull to me.

A drawing of a cow with a magnet in its stomach.
A drawing of a cow
with a magnet in its stomach.
Well, I can’t vouch for the accuracy of this story or the effectiveness of the treatment, but at least the mechanism underlying the feeding of magnets to cows is plausible. Cattle swallow a lot of junk while eating, including some that is magnetic (for example, wires and nails...yikes!). The article says
That's where magnets come in. A magnet about the size and shape of a finger is placed inside a bolus gun, essentially a long tube that ensures the magnet goes down the cow's throat. Then it settles in the reticulum, collecting any stray pieces of metal. The magnets, which cost a few bucks a pop, can also be placed preventatively. To check if a cow already has a magnet, farmers use a compass.
Apparently the “bolus gun” is inserted through the mouth; I wasn’t so sure. Wikipedia has a page about cow magnets, titled “hardware disease.” Companies make money selling cow magnets (these are big magnets, about four inches long). But even though calves eat magnets, kids should not (note the plural: the problems arise when magnets interact).

A funny picture about a spherical cow.
Consider a spherical cow.
The 4th edition of Intermediate Physics for Medicine and Biology has an entire chapter about biomagnetism, but no mention of magnets in bovine stomachs. What is wrong with Russ and me? The only place we mention cattle at all is in Homework Problem 30 in Chapter 4, where we analyze the temperature distribution throughout a spherical cow. A small-scale analogy of magnets in steers’ stomachs are rows of magnetosomes in magnetotactic bacteria (see Fig. 8.25 in IPMB), but I doubt the bacteria use them to collect nails before they can puncture their membrane. Yet, could we misunderstand the biological purpose of magnetosomes?

Finally, I have some good news and bad news about the 5th edition of IPMB. The good news: we submitted the page proofs and the book should be published in the next few months. The bad news: no more mention of livestock in the revised edition.
A funny photograph of a cow.
If you want healthy cows feed them magnets.

Friday, April 23, 2010

Therapeutic Touch

Therapeutic touch is a “healing technique” in which a therapist places their hands near a patient and detects or manipulates the patient’s “energy field.” Russ Hobbie and I don’t discuss therapeutic touch in the 4th edition of Intermediate Physics for Medicine and Biology, nor will we include it in future editions. However, since this egregious example of “voodoo science” hasn’t gone away (see http://www.therapeutictouch.org), let me address it here in this blog.

Bob Park described therapeutic touch in his delightful April 3, 1998 entry to his What’s New weekly column.
3. HUMAN ENERGY FIELD: SCIENTIST, AGE 9, TESTS TOUCH THERAPY.
More than 40,000 health professionals have been trained in TT and it's offered by 70 hospitals in the US. And yet no one had ever checked to see if practitioners can, as they claim, tactilely sense such a field—until now. The Journal of the American Medical Association this week published the research of a fourth-grade girl. For a science fair project, the little girl persuaded 21 touch therapists to submit to a beautifully simple test. In 280 trials, the 21 scored 44%. According to the editor of JAMA, reviewers found the study to be “solid gold.” The James Randi Educational Foundation has been offering $1M to anyone who can pass a similar test—only one tried (WN 27 Mar 98) , but a 9-year old must have seemed less threatening. The girl, Emily Rosa of Loveland, CO, now 11, plans to take on magnet therapy next.
Recently, Russ called my attention to Eugenie Mielczarek’s insightful commentary “Magnetic Fields, Health Care, Alternative Medicine and Physics” in the April 2010 edition of Physics and Society, the quarterly newsletter of the Forum of Physics and Society, a division of the American Physical Society. Mielczarek writes
In Therapeutic Touch the protocol requires that a therapist moves his or her hands over the patient’s “energy field,” allegedly “tuning” a purported “aura” of biomagnetic energy that extends above the patient’s body. This is thought to somehow help heal the patient. Although this is less than one percent of the strength of Earth’s magnetic field, corresponds to billions of times less energy than the energy your eye receives when viewing even the brightest star in the night sky, and is billions of times smaller than that needed to affect biochemistry, the web sites of prominent clinics nevertheless market the claims.
Iron, Nature's Universal Element:  Why People Need Iron   and Animals Make Magnets,  by Eugenie Mielczarek, superimposed on Intermediate Physics for Medicine and Biology.
Iron, Nature's Universal Element:
Why People Need Iron
and Animals Make Magnets
,
by Eugenie Mielczarek.
Mielczarek is an emeritus professor at George Mason University. In 2006 she published a Resource Letter in the American Journal of Physics: “Physical Frontiers in Biology: A Resource for Students and Faculty” (Volume 74, Pages 375–381). Russ and I mentioned this publication in our 2009 “Resource Letter on Medical Physics,” where we wrote that Mielczarek’s letter “begins with a fascinating three-page essay on the role of physics in biology.” This week I discovered that the published black-and-white pictures in that 3-page essay are available in color at Mielczarek’s website. Mielczarek is an editor of the 1993 book Biological Physics, a collection of landmark biological physics papers. One of her research interests is the role of iron in biological systems, and in 2000 she coauthored the book Iron, Nature’s Universal Element: Why People Need Iron and Animals Make Magnets, which I just put onto my summer reading list. We cite this “very readable” book in Section 8.8.3 of Intermediate Physics for Medicine and Biology, but it must have been one of those things that Russ added to the 4th edition because I haven’t read it yet. We also cite Mielczarek’s American Journal of Physics paper “Experimental and Theoretical Models of Nonlinear Behavior" in Chapter 10 of our book.

For more information about the physics of therapeutic touch, see the article “Emerita Professor Makes a Case Against Distance Healing” in the Mason Gazette, and the press release “Think Tank Objects to Taxpayer Funding for Therapeutic Touch, other Alternative Medicine Therapies” from the Center of Inquiry.

Let us hope that hope that Bob Park and Eugenie Mielczarek continue to debunk the techniques of “alternative medicine” when they violate the laws of physics.

Friday, September 29, 2017

James Mattiello, Medical Physicist (1958-2017)

An article about James Mattiello that appeared in the spring 1984 issue of the Oakland University Magazine.
James Mattiello passed away on March 19, 2017, at the age of 59, in Utica, Michigan. Jim was a friend of mine from when we both worked at the National Institutes of Health, where he contributed to the development of a magnetic resonance imaging technique called Diffusion Tensor Imaging. He was the first graduate of the Oakland University Medical Physics PhD Program, which I now direct. When I was at NIH, I had never heard of Oakland University until Jim mentioned it as his alma mater. Little did I know that I would have a 20-year career at OU, teaching and doing research.

Jim performed his PhD research with Prof. Fred Hetzel, and graduated with his PhD in 1987. His dissertation described an in vivo experimental investigation on the interaction between photodynamic therapy and hyperthermia. A copy of his dissertation sits in our Physics Department office, and I often show it to prospective students because it is the thickest dissertation on the shelf, over 480 pages. Hetzel, Norm Tepley, Michael Chopp, and Abe Liboff formed the dissertation committee (I didn’t arrive at OU until ten years later). Three journal articles resulting from this work are:
Mattiello J, Hetzel FW (1986) Hematoporphyrin-derivative optical-fluorescence-detection instrument for localization of bladder and bronchous carcinoma in situ. Review of Scientific Instruments 57:2339–2342.
Mattiello J, Hetzel F, Vandenheede L (1987) Intratumor temperature measurements during photodynamic theorapy. Photochemistry and Photobiology 46:873–879.
Mattiello J, Evelhoch JL, Brown E, Schaap AP, Hetzel FW (1990) Effect of photodynamic therapy on RIF-1 tumor metabolism and blood flow examined by 31P and 2H NMR spectroscopy. NMR in Biomedicine 3:64–70.
A news article about Jim’s research appeared in the Spring 1984 issue of The Oakland University Magazine (above right).

After graduation, Jim obtained a fellowship to work at the intramural program of the National Institutes of Health in Bethesda, Maryland, where I first met him. Below I quote from an NIH oral history interview with Peter Basser, which describes how Basser, Denis LeBihan, and Jim developed Diffusion Tensor Imaging in the early 1990s.
Well actually this was an amazing story too, because there’s so many people involved and activities that had to be done in order to bring this from bench to bedside. So the first thing is Denis and I started corresponding, and Jim Mattiello then, who was working with Denis and who was also working in our program [Biomedical Engineering and Instrumentation Program], was a little frustrated with some of the projects he was working on and decided that he wanted to start working with us. So I was excited about that because Jim had a technical background in MRI, he had been working in the area for a few–maybe a year and a half at that point, and he would provide a lot of experimental help which I really couldn’t provide because my knowledge at that point of the NMRI [Nuclear Magnetic Resonance Imaging] hardware and sequences and things was almost nonexistent. And so we started doing diffusion experiments with water. The first thing that we – in pork loin – the first thing that we started doing was – Denis got us some magnetic time down at the NMRI center and we started to – since we had this mathematical framework that related the signal that we measured to the diffusion tensor the first thing that you want to do is show that the diffusion tensor in water is an isotropic tensor, which means that if you look at the diffusion process along any direction that it appears the same and that has a characteristic – a special form when you write it as a tensor and it’s something that if you can’t do that you can’t look at other materials that are more complex.
I can remember the morning when Peter came in to NIH carrying a pork loin from a local grocery store. I asked him why he brought a chunk of raw meat to work, and he told me that he and Jim were going to use it that day in their first DTI experiment on muscle. Later in the oral history interview, Basser describes this experiment.
We wrote our first abstract describing it [Anisotropic Diffusion Tensor Imaging] at the ISMRM [International Society for Magnetic Resonance in Medicine Conference] I think which we presented in Berlin in 1992, we looked at a sample of pork loin and we showed that we first measured the diffusion tensor for a large region of that pork loin specimen, and then we actually physically rotated that – Jim Mattiello actually physically rotated the pork loin specimen in the magnet. We repeated the experiments, calculated the tensor and we were able to show that the directions that we calculated for the pork loin muscles followed the direction of the rotation that he had applied physically on that sample, so that we were measuring something intrinsic to the tissue. These principle directions that we were able to extract from the diffusion tensor were fundamental to the tissue architecture and were independent of the coordinate system that we made the measurement in, which was really, I think, a very important demonstration then.
Jim is a coauthor on two classic papers about DTI that are widely cited in the medical literature.
Basser PJ, Mattiello J, LeBihan D (1994) MR Diffusion Tensor Spectroscopy and Imaging. Biophysical Journal 66:259–267. (4495 citations in Google Scholar as of 9-23-2017)

Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the Effective Self-Diffusion Tensor From the NMR Spin Echo. Journal of Magnetic Resonance B 103:247–254. (3261 citations)
I know many scientists who have had long and successful careers, but few of them can claim they contributed to a paper with over 4000 citations, a significant achievement (that averages to one citation every other day for over two decades). My most cited article, published about the same time, has only 500 citations, and I consider myself to be a successful scientist. Jim was also the lead author on two related papers.
Mattiello J, Basser PJ, LeBihan D (1994) Analytical Expressions for the B Matrix in NMR Diffusion Imaging and Spectroscopy. Journal of Magnetic Resonance A, 108:131–141. (224 citations)

Mattiello J, Basser PJ, LeBihan D (1997) The B Matrix in Diffusion Tensor Echo-Planar Imaging. Magnetic Resonance in Medicine 37:292–300. (227 citations)
In addition, Jim is listed as an inventor on a key patent for DTI.
Basser PJ, Mattiello JH, LeBihan D. Method and System for Measuring the Diffusion Tensor and for Diffusion Tensor Imaging. US Patent 5,539,310.
Russ Hobbie and I cite the 1994 Biophysical Journal paper and the 1994 Journal of Magnetic Resonance A paper in Intermediate Physics for Medicine and Biology. Our Figure 18.40 is based in part on the pulse sequence he helped developed for DTI. Nowadays Diffusion Tensor Imaging is used to make beautiful maps of fiber tracts in the brain.

Jim spent the later part of his career teaching physics at St. Clair County Community College in Port Huron, Michigan. I last saw him when he returned to Oakland University in 2002 to give a physics colloquium about DTI.

James Mattiello’s contributions to magnetic resonance imaging, and specifically to diffusion tensor imaging, have had a lasting impact on the field of medical physics. He will be missed.