Friday, March 24, 2017

Enhancement of Human Color Vision by Breaking the Binocular Redundancy

Russ Hobbie and I added a discussion of color vision to the 5th edition of Intermediate Physics for Medicine and Biology.
The eye can detect color because there are three types of cones in the retina, each of which responds to a different wavelength of light (trichromate vision): red, green, and blue, the primary colors. However, the response curve for each type of cone is broad, and there is overlap between them (particularly the green and red cones). The eye responds to yellow light by activating both the red and green cones. Exactly the same response occurs if the eye sees a mixture of red and green light. Thus, we can say that red plus green equals yellow. Similarly, the color cyan corresponds to activation of both the green and blue cones, caused either by a monochromatic beam of cyan light or a mixture of green and blue light. The eye perceives the color magenta when the red and blue cones are activated but the green is not. Interestingly, no single wavelength of light can do this, so there is no such thing as a monochromatic beam of magenta light; it can only be produced my mixing red and blue. Mixing all three colors, red and green and blue, gives white light.
I know that some animals have dichromate vision (only two color receptors), as do some color blind people. Also, a few animals have tetrachromate vision (four color receptors). But I never imagined that I could have enhanced color vision just by wearing a pair of fancy glasses. Could I become a tetrachromat?

Yes! A preprint appeared recently in the biological physics arXiv by Mikhail Kats and his colleagues at the University of Wisconsin about “Enhancement of Human Color Vision by Breaking the Binocular Redundancy” (arXiv:1703.04392). Graduate student and National Science Foundation Graduate Research Fellow Brad Gundlach is the lead author of this fascinating paper. The abstract is given below.
To see color, the human visual system combines the responses of three types of cone cells in the retina—a process that discards a significant amount of spectral information. We present an approach that can enhance human color vision by breaking the inherent redundancy in binocular vision, providing different spectral content to each eye. Using a psychophysical color model and thin-film optimization, we designed a wearable passive multispectral device that uses two distinct transmission filters, one for each eye, to enhance the user’s ability to perceive spectral information. We fabricated and tested a design that “splits” the response of the short-wavelength cone of individuals with typical trichromatic vision, effectively simulating the presence of four distinct cone types between the two eyes (“tetrachromacy”). Users of this device were able to differentiate metamers (distinct spectra that resolve to the same perceived color in typical observers) without apparent adverse effects to vision. The increase in the number of effective cones from the typical three reduces the number of possible metamers that can be encountered, enhancing the ability to discriminate objects based on their emission, reflection, or transmission spectra. This technique represents a significant enhancement of the spectral perception of typical humans, and may have applications ranging from camouflage detection and anti-counterfeiting to art and data visualization.
I’d love to try out a pair of these glasses! I wonder whether they provide merely a subtle change in vision or offer an entirely new visual experience? Also, what would it be like to have each eye receiving different color information? Does the brain need to be trained to handle the additional information, or does it adapt easily? If the enhancement of vision is dramatic, I could easily see these glasses becoming the hot new gadget people clamor for this Christmas. And it all comes from applying physics to medicine and biology.

Friday, March 17, 2017

Five Popular Misconceptions about Osmosis

In Chapter 5 of Intermediate Physics for Medicine and Biology, Russ Hobbie and I discuss osmotic pressure.
5.2 Osmotic Pressure in an Ideal Gas

The selective permeability of a membrane gives rise to some striking effects. The flow of water that occurs because solutes are present that cannot get through the membrane is called osmosis. This phenomenon seems strange when it is first encountered, and explanations are often fraught with misconceptions (Kramer and Myers 2012).
What are these misconceptions that explanations are often fraught with? The reference is to the paper “Five Popular Misconceptions About Osmosis” (American Journal of Physics, Volume 80, Pages 694–699, 2012). The paper raises five questions.
  1. Is osmosis limited to mixtures in the liquid state? 
  2. Does osmosis require an attractive interaction between solute and solvent? 
  3. Can osmosis drive solvent from a compartment of lower to higher solvent concentration? 
  4. Can the osmotic pressure be interpreted as the partial pressure of the solute? 
  5. What exerts the force that drives solvent across the semipermeable membrane, overcoming both viscous resistance and an opposing hydrostatic pressure gradient?
Later in the paper, the authors answer these questions.
  1. The phenomenology of osmosis is the same for gases, liquids, and supercritical fluids. The misconception is that osmosis is limited to liquids. 
  2. Osmosis does not depend on an attractive force between solute and solvent. The misconception is that osmosis requires an attractive force. 
  3. Osmosis can drive solvent from a lower to a higher solvent concentration compartment. The misconception is that osmosis always happens down a concentration gradient. 
  4. The osmotic pressure cannot be interpreted as the partial pressure of the solute. The misconception is that it can. 
  5. The semipermeable membrane exerts the force that drives solvent flow. The misconception is that no force is required to explain the flow.
So, how did Russ and I do?
  1. We certainly get the first question correct, because our initial explanation is for an ideal gas. 
  2. I think we get the second one right too, but it is not as clear, because we restrict our discussion to ideal solutions in which no heat is evolved or absorbed. 
  3. We cast our discussion in terms of the chemical potential, and then relate the chemical potential to the hydrostatic pressure and the solute concentration. I don’t think we ever address the issue of solvent concentration. I’ll say we are silent on this one. 
  4. We say “Except in an ideal gas, it [the chemical potential] is not the same as the partial pressure (a concept that is not normally used in a liquid).” So we get this one right, and I’m glad we put the not in italics. 
  5. In Section 5.9.6 we have a nice discussion about the forces acting on the membrane. But we never really say what force explains the solvent flow. Again, I’ll say we are silent on this one.
Kramer and Myers have an illuminating discussion about the force causing the solvent to cross the membrane (I’ve removed all their references; you can find them in the original paper).
Consider an idealized semipermeable membrane as a force field that repels solute but has no effect on the solvent. The Brownian motion of the solute molecules bring them into occasional contact with this field, at which time they receive some momentum directed away from the membrane. Viscous interactions between solute and solvent then rapidly distribute this momentum to the solvent molecules in the neighborhood of the membrane. In this way, the membrane exerts a repulsive force on the solution as a whole. Since additional pure solvent can freely cross our idealized membrane, it flows into the solution compartment, gradually increasing the hydrostatic pressure in the solution. Thus, a pressure gradient builds up across the thickness of the membrane. This pressure gradient exerts a second force on the solution, capable of counteracting the membrane force. Quantitative treatments show that the pressure difference required to stop solvent flow into a dilute solution is exactly Π = kBTcB. Nelson has aptly called the mechanism by which the membrane drives fluid flow the rectification of Brownian motion.
Overall I would say Russ and I do okay. We don’t propagate any of the five misconceptions. We answer three of their questions correctly and are silent on two others. Most of the discussion about osmosis goes back to the 3rd or earlier editions of IPMB, so Russ is the one who got it right. At least I didn’t screw it up.

Friday, March 10, 2017

My Honors College Class: The Making of the Atomic Bomb

The Making of the Atomic Bomb, by Richard Rhodes, superimposed on Intermediate Physics for Medicine and Biology.
The Making of the Atomic Bomb,
by Richard Rhodes.
This semester I am teaching a class in Oakland University’s Honors College called “The Making of the Atomic Bomb,” based on Richard Rhodes’s book by the same name. The class is a mixture of nuclear physics, a history of the Manhattan Project, and a discussion about World War II (today we discuss Pearl Harbor). I became interested in this topic from the writings of Cameron Reed of Alma College here in Michigan.

The Honors College students are outstanding, but they are from disciplines throughout the university and do not necessarily have strong math and science backgrounds. Therefore the mathematics in this class is minimal, but nevertheless we do a two or three quantitative examples. For instance, Chadwick’s discovery of the neutron in 1932 was based on conclusions drawn from collisions of particles, and relies primarily on conservation of energy and momentum. When we analyze Chadwick’s experiment in my Honors College class, we consider the head-on collision of two particles of mass M1 and M2. Before the collision, the incoming particle M1 has kinetic energy T and the target particle M2 is at rest. After the collision, M1 has kinetic energy T1 and M2 has kinetic energy T2.

Intermediate Physics for Medicine and Biology examines an identical situation in Section 15.11 on Charged-Particle Stopping Power.
The maximum possible energy transfer Wmax can be calculated using conservation of energy and momentum. For a collision of a projectile of mass M1 and kinetic energy T with a target particle of mass M2 which is initially at rest, a nonrelativistic calculation gives
One important skill I teach my Honors College students is how to extract a physical story from a mathematical expression. One way to begin is to introduce some dimensionless parameters. Let t be the ratio of kinetic energy picked up by M2 after the collision to the incoming kinetic energy T, so t = T2/T or, using the notation in IPMB, t = Wmax/T (the subscript “max” arises because this maximum value of T2 corresponds to a head-on collision; a glancing blow will result in a smaller T2). Also, let m be the ratio of M1 to M2, so m = M1/M2. A little algebra results in the simpler-looking equation
The goal is to unmask the physical behavior hidden in this equation. The best way to proceed is to examine limiting cases. There are three that are of particular interest.

m much less than 1. When m is small (think of a fast-moving proton colliding with a stationary lead nucleus) the denominator is approximately one, so t = 4m. Because m is small, so is t. This means the proton merely bounces back elastically as if striking a brick wall. Little energy is transferred to the lead nucleus.
An illustration showing how a light mass behaves when it hits a stationary heavy mass.
 m much greater than 1. When m is large (think of a fast-moving lead nucleus smashing into a stationary proton) the denominator is approximately m2, so t = 4/m. Because m is large, t is small. This means the lead continues on as if the proton were not even there, with little loss of energy. The proton flies off at a high speed, but because of its small mass it carries off negligible energy.
An illustration showing how a heavy mass behaves when it hits a stationary light mass.
m equal to 1. When m is one (think of a neutron colliding with a proton, which was the situation examined by Chadwick), the denominator becomes 4, and t = 1. All of the energy of the neutron is transferred to the proton. The neutron stops and the proton flies off at the same speed the neutron flew in.
An illustration showing how a mass behaves when it hits a stationary mass.
A mantra I emphasize to my students is that equations are not just things you put numbers into to get other numbers. Equations tell a physical story. Being able to extract this story from an equation is one of the most important abilities a student must learn. Never pass up a chance to reinforce this skill.

Friday, March 3, 2017

Glucose, Mannitol, Sucrose, and Raffinose

The structure of glucose.
The structure of glucose.
You would think by now I would know everything in Introductory Physics for Medicine and Biology; after all, I’m one of the authors. So when thumbing through the book the other day (doesn’t everyone thumb through IPMB when they have a spare moment?) I came across Figure 4.11, showing a log-log plot of the diffusion constant as a function of molecular radius. Four data points stand out—glucose, mannitol, sucrose, and raffinose—because they are plotted as open rather than solid circles. This figure was drawn originally by Russ Hobbie and has appeared in every edition of IPMB. I got to wondering “why did Russ choose to plot those four molecules out of the thousands available?” And then, more specifically, I found myself asking “just what is raffinose anyways?”

Figure 4.11 of Intermediate Physics for Medicine and Biology, showing the diffusion constant of a molecule as a function of the size of the molecule.

To figure all this out, I grabbed the textbook I read in graduate school while auditing the biochemistry class taken by Vanderbilt medical students (Biochemistry, by the late Geoffrey Zubay). These molecules are carbohydrates or, more simply, sugars. Glucose is the canonical example; this six-carbon molecule C6H12O6 is “the single most important substrate for energy metabolism” and in humans it is “the single most important sugar in the blood”. It usually exists in a ring conformation. It is a monosaccharide because it consists of a single ring. Other monosaccharides are fructose and galactose, which all have the same formula, C6H12O6, but the arrangement of the atoms is slightly different.

Mannitol differs from glucose by having an extra two hydrogen atoms: C6H14O6. Technically it’s a sugar alcohol rather than a sugar. You’d think it would act similarly to glucose, but it doesn’t. Mannitol is relatively inert in humans. It doesn’t cross the blood-brain barrier (I discussed the implications of this previously in this blog) and it is not reabsorbed by the kidney like glucose is so it acts as an osmotic diuretic. In Fig. 4.11, the mannitol and glucose data almost overlap, and it is hard to tell which data point is which. According to a paper by Bashkatov et al. (2003), glucose has a larger diffusion coefficient than mannitol, so glucose must be the data point above and to the left, and mannitol below and to the right.

Sucrose is a disaccharide, which means it is two monosaccharides bound together through a “glycosidic linkage”. It’s common table sugar, and consists of a molecule of glucose bound to a molecule of fructose. Russ probably chose to plot sucrose as a typical disaccharide. Two other  disaccharides he could have chosen are lactose (glucose + galactose) and maltose (glucose + glucose).

Raffinose is a trisaccharide, consisting of galactose + glucose + fructose. Therefore, Russ’s choice of plotting glucose, sucrose, and raffinose makes sense: the most important monosaccharide, disaccharide, and trisaccharide. A fun fact about raffinose is that the human digestive tract does not have the enzyme needed to digest it. However, certain gas-producing bacteria in our gut can digest it, resulting in flatulence. You probably won’t be surprised to learn that beans often contain a lot of raffinose.

So, Russ is a clever fellow. He hid a short review of carbohydrate biochemistry in Fig. 4.11. Who knew?

Friday, February 24, 2017

Benefits and Barriers of Accommodating Intraocular Lenses

In Chapter 14 of Intermediate Physics for Medicine and Biology, Russ Hobbie and I discuss vision. In particular, we analyze the refraction of light by the lens of the eye, and examine different disorders such as hyperopia, and myopia. We then write
This ability of the lens to change shape and provide additional converging power is called accommodation…. As we age, the accommodation of the eye decreases... A normal viewing distance of 25 cm or less requires 4 diopters or more of accommodation... This limit is usually reached in the early 40s. To make up for the lack of accommodation, one can place a converging lens in front of the eye when viewing nearby objects (reading glasses).
When a patient has a cataract, their lens becomes cloudy. A common surgical procedure is to remove the opaque lens and replace it with an artificial intraocular lens. A conventional IOL is designed to supply the correct power to provide clear distance vision, but it cannot accommodate. Reading glasses provide one option for close vision, but many patients find them to be an inconvenient nuisance.

Researchers are now racing to create accommodating IOLs. A recent review by Jay Pepose, Joshua Burke, and Mujtaba Qazi discusses the “Benefits and Barriers of Accommodating Intraocular Lenses” (Current Opinion in Ophthalmology, Volume 28, Pages 3–8, 2017).
Presbyopia [the loss of accommodation] and cataract development are changes that ubiquitously affect the aging population. Considerable effort has been made in the development of intraocular lenses (IOLs) that allow correction of presbyopia postoperatively. The purpose of this review is to examine the benefits and barriers of accommodating IOLs, with a focus on emerging technologies.
Apparently the current accommodating intraocular lenses don’t function by changing their focal length, but rather by being pushed forward when the eye muscles responsible for accommodation contract. They only provide about 1 diopter of accommodation, which is not enough to avoid reading glasses. The review concludes
Such limitations [of the presently available accommodating IOLs] may be circumvented in the future by accommodative design strategies that rely more on shape-related changes in the surfaces of the IOLs or in refractive index than by forward translation alone. Fibrosis and contraction of the capsular bag, which can alter the position of the IOL optic or the performance of an accommodating IOL represent other challenges, and at least one accommodating IOL … has been designed for implantation in the ciliary sulcus. Approval of accommodating IOLs capable of delivering three or more diopters of accommodation would allow a full range of intermediate and near vision without the compromise of photic phenomenon or loss of contrast inherent to other optical strategies, and perhaps also allow refractive targeting that could minimize hyperopic surprises by taking advantage of this expanded amplitude of accommodation.
Some “accommodating” IOLs are multifocal, providing two focal lengths and therefore two images simultaneously, one for distance vision and one for reading. The brain then sorts out the mess. Apparently this is not as difficult as is sounds.

I predict that accommodating intraocular lenses will soon become very sophisticated. Cataract surgery is performed on millions of people each year; it is common in the elderly population, which is growing dramatically as baby boomers age; in principle the problem is not complex, you just need to make a lens that can adjust its focal length by about ten percent; compared to other medical devices like pacemakers and defibrillators, accommodating IOLs should be cheap; and new nanotechnologies plus knowledge gained from the miniaturization of other medical devices may pave the way to rapid advances. Accommodating intraocular lenses may soon become an example of how to successfully apply physics to solve a problem in medicine.