Friday, March 17, 2017

Five Popular Misconceptions about Osmosis

In Chapter 5 of Intermediate Physics for Medicine and Biology, Russ Hobbie and I discuss osmotic pressure.
5.2 Osmotic Pressure in an Ideal Gas

The selective permeability of a membrane gives rise to some striking effects. The flow of water that occurs because solutes are present that cannot get through the membrane is called osmosis. This phenomenon seems strange when it is first encountered, and explanations are often fraught with misconceptions (Kramer and Myers 2012).
What are these misconceptions that explanations are often fraught with? The reference is to the paper “Five Popular Misconceptions About Osmosis” (American Journal of Physics, Volume 80, Pages 694-699, 2012). The paper raises five questions.
  1. Is osmosis limited to mixtures in the liquid state? 
  2. Does osmosis require an attractive interaction between solute and solvent? 
  3. Can osmosis drive solvent from a compartment of lower to higher solvent concentration? 
  4. Can the osmotic pressure be interpreted as the partial pressure of the solute? 
  5. What exerts the force that drives solvent across the semipermeable membrane, overcoming both viscous resistance and an opposing hydrostatic pressure gradient?
Later in the paper, the authors answer these questions.
  1. The phenomenology of osmosis is the same for gases, liquids, and supercritical fluids. The misconception is that osmosis is limited to liquids. 
  2. Osmosis does not depend on an attractive force between solute and solvent. The misconception is that osmosis requires an attractive force. 
  3. Osmosis can drive solvent from a lower to a higher solvent concentration compartment. The misconception is that osmosis always happens down a concentration gradient. 
  4. The osmotic pressure cannot be interpreted as the partial pressure of the solute. The misconception is that it can. 
  5. The semipermeable membrane exerts the force that drives solvent flow. The misconception is that no force is required to explain the flow.
So, how did Russ and I do?
  1. We certainly get the first question correct, because our initial explanation is for an ideal gas. 
  2. I think we get the second one right too, but it is not as clear, because we restrict our discussion to ideal solutions in which no heat is evolved or absorbed. 
  3. We cast our discussion in terms of the chemical potential, and then relate the chemical potential to the hydrostatic pressure and the solute concentration. I don’t think we ever address the issue of solvent concentration. I’ll say we are silent on this one. 
  4. We say “Except in an ideal gas, it [the chemical potential] is not the same as the partial pressure (a concept that is not normally used in a liquid).” So we get this one right, and I’m glad we put the not in italics. 
  5. In Section 5.9.6 we have a nice discussion about the forces acting on the membrane. But we never really say what force explains the solvent flow. Again, I’ll say we are silent on this one.
Kramer and Myers have an illuminating discussion about the force causing the solvent to cross the membrane (I’ve removed all their references; you can find them in the original paper).
Consider an idealized semipermeable membrane as a force field that repels solute but has no effect on the solvent. The Brownian motion of the solute molecules bring them into occasional contact with this field, at which time they receive some momentum directed away from the membrane. Viscous interactions between solute and solvent then rapidly distribute this momentum to the solvent molecules in the neighborhood of the membrane. In this way, the membrane exerts a repulsive force on the solution as a whole. Since additional pure solvent can freely cross our idealized membrane, it flows into the solution compartment, gradually increasing the hydrostatic pressure in the solution. Thus, a pressure gradient builds up across the thickness of the membrane. This pressure gradient exerts a second force on the solution, capable of counteracting the membrane force. Quantitative treatments show that the pressure difference required to stop solvent flow into a dilute solution is exactly Π = kBTcB. Nelson has aptly called the mechanism by which the membrane drives fluid flow the rectification of Brownian motion.
Overall I would say Russ and I do okay. We don’t propagate any of the five misconceptions. We answer three of their questions correctly and are silent on two others. Most of the discussion about osmosis goes back to the 3rd or earlier editions of IPMB, so Russ is the one who got it right. At least I didn’t screw it up.

1 comment:

  1. This reminds me of this preprint that just came out, which I haven't read but which looks interesting: http://www.biorxiv.org/content/early/2017/03/14/116806

    ReplyDelete