Faraday, Maxwell, and the Electromagnetic Field, by Nancy Forbes and Basil Mahon. |
It is almost impossible to overstate the scale of Faraday and Maxwell’s achievement in bringing the concept of the electromagnetic field into human thought. It united electricity, magnetism, and light into a single, compact theory; changed our way of life by bringing us radio, television, radar, satellite navigation, and mobile phones; inspired Einstein’s special theory of relativity; and introduced the idea of field equations, which became the standard form used by today’s physicists to model what goes on in the vastness of space and inside atoms.I have read previous biographies of both Faraday and Maxwell, so their story was familiar to me. But one anecdote about Faraday I had never heard before.
The Royal Institution’s Friday Evening Discourses had by now become an institution in their own right. The lecture on April 3, 1846, turned out to be a historic occasion, although none of the audience recognized it as such and the whole thing happened by chance in a rather bizarre fashion. Charles Wheatstone was to have been the latest in a long line of distinguished speakers, but he panicked and ran away just as he was due to make his entrance[!]. Although amply confident in his professional dealings as a scientist, inventor, and businessman, Wheatstone was notoriously shy of speaking in public, and Faraday had taken a gamble when engaging him to talk about his latest invention, the electromagnetic chronoscope—a device for measuring small time intervals, like the duration of a spark. The gamble had failed, and Faraday was left with the choice of sending disappointed customers home or giving the talk himself. He chose to talk, but he ran out of things to say on the advertised topic well before the allotted hour was up.
Caught off-guard, he did what he had never done before and gave the audience a glimpse into his private meditations on matter, lines of force, and light. In doing so, he draw an extraordinary prescient outline of the electromagnetic theory of light, as it would be developed over the next sixty years….
The theory’s construction had been an immense creative effort, sustained over a decade and inspired, from first to last, by the work of Michael Faraday. Thanks to Faraday’s meticulous recording of his findings and thoughts in his Experimental Researches in Electricity, Maxwell had been able to see the world as Faraday did, and, by bringing together Faraday’s vision with the power of Newtonian mathematics, to give us a new concept of physical reality, using the power of mathematics. But mathematics would not have been enough without Maxwell’s own near-miraculous intuition; witness the displacement current, which gave the theory its wonderful completeness. The theory belongs to both Maxwell and Faraday.Russ Hobbie and I discuss electricity and magnetism in the 4th edition of Intermediate Physics for Medicine and Biology. Chapters 6 and 7 show how electrostatics can be used to describe how nerves and muscles behave. Chapter 8 discusses magnetism and electromagnetism. Chapter 9 examines in more detail how electromagnetic fields interact with the body, and Chapter 18 describes how magnetism leads to magnetic resonance imaging. So, it’s safe to say that IPMB has Maxwell and Faraday’s influence throughout.
If you want to learn more about Maxwell’s work, I suggest Maxwell on the Electromagnetic Field: A Guided Study by Thomas K. Simpson. He reproduces Maxwell’s three landmark papers, and provides the necessary context and background to understand them. Forbes and Mahon talk briefly at the end of their book about the scientists who came after Maxwell and firmly established his theory. For more on this topic, read The Maxwellians, one of the best histories of science I know. I enjoyed Faraday, Maxwell, and the Electromagnetic Field. It provides a great introduction to a fascinating story in the history of science.