Flight
I often see birds high in the sky, soaring through the air without flapping their wings. I suspect many are red-tailed hawks, but I’ve never gotten close enough to one to say for sure. How does soaring work? First, it requires a thermal updraft. The sun heats the earth and the earth heats the air next to it, resulting in a temperature gradient: the air near the ground is hotter than the cooler air high above. However, hot air is lighter and therefore tends to rise. This unstable situation results in thermal updrafts. Hot air at one location will rise, and then as it cools will sink at some nearby location. The hawk can glide in the uprising air, so it slowly sinks with respect to the air but rises with respect to the ground. Once high up, it can then glide anywhere while searching for food, until it is low enough that it must seek another updraft.Life in Moving Fluids, by Steven Vogel. |
In birds, bats, and insects, flapping wings combine the functions that airplanes divide between fixed wings and propellers—in a sense, they’re closer to helicopters than to airplanes, and it’s all too easy to be misled by our habit of calling the propulsive appendages “wings” rather than “propeller blades.” But they aren’t quite like ordinary propellers either, since flapping wings produce both thrust and lift directly, rather than producing thrust directly and getting lift by diverting some of the thrust to pay for the drag of fixed, lift-producing wings. The composite function, as well as their reciprocating rather than rotational motion, mean that the motion of flapping wings is inevitably complex… The downstroke moves a wing forward as well as downward and produces mainly upward force but usually some rearward force as well. The upstroke goes backward as well as upward, producing mainly rearward force but often some upward force.
Scaling
Scaling, by Knut Schmidt-Nielsen. |
Scaling relationships like we just saw for the hummingbird are common in biology. If you want to learn more about this topic, I suggest Knut Schmidt-Nielsen’s fascinating book Scaling: Why is Animal Size so Important?
Drinking
My favorite bird is the mourning dove. We sometimes will have eight or more of these sweet, gentle birds around our bird feeder. I love their low-pitched coo… coo… coooooooooo song. They mate for life.Doves are unique among birds in the way they drink. Most birds fill their bill with water and then gravity pulls it down to their stomach. Sometimes they tilt their head back to help the water flow. Mourning doves, on the other hand, suck water into their bill, like we suck water through a straw. Professor Gart Zweers, from the University of Leiden, took high-speed x-ray photos, and concluded that doves draw a partial vacuum which pulls the water up.
Singing
Bird songs are analyzed using plots of time and frequency. As discussed in Chapter 11 of Intermediate Physics for Medicine and Biology, you can resolve any function of time into its component frequencies: Fourier analysis. If you plot the instantaneous frequency versus time, you get a sonogram. The higher the frequency, the higher the pitch that we hear. The northern cardinal’s song starts on a high pitch (around 4 kilohertz, which is about the frequency of highest pitched note on a piano) and then slurs downward an octave (to 2 kilohertz) in about half a second.Trevisan and Mindlin (Philosophical Transactions A, Volume 367, Pages 3239–3254, 2009) have modeled the bird’s vocal organ, called the syrinx. Their model might be familiar to physics students: it is Newton’s second law, force equals mass times acceleration. The important parameters that enter the model are the mass, stiffness, and a constant characterizing the dissipation or attenuation of the motion. The dissipation can be nonlinear, leading to all sorts of complex dynamics. The model predicts an oscillatory behavior (like that for a mass on a spring). Furthermore, the beak acts as a resonance tube (somewhat like an organ pipe).
We get majestic red cardinals visiting our birdfeeders all the time. Next time you hear a cardinal singing, think of all the physics going on.
Magnetoreception
Are Electromagnetic Fields Making Me Ill? |
In 1963, German zoologist Wolfgang Wiltschko placed European robins inside a chamber and turned on a magnetic field comparable in strength to the earth’s field. He did not expect a response, but to his surprise the birds oriented with the field… The robins proved adept at sensing magnetic signals during their annual migration.
Some researchers believe there are other mechanisms for magnetoreception besides magnetite particles. I wrote
A few animals, including the European robin, may take advantage of free radical reactions instead of magnetite for magnetoreception. Sonke Johnsen and Kenneth Lohmann [Physics Today, Volume 61, Pages 29–35, 2008], after reviewing the data, conclude that “the current evidence for the radical-pair hypothesis is maddeningly circumstantial…” The jury is still out on this issue.To tell you the truth, I’m skeptical that free radical reactions are important.
Another animal that may detect the earth’s magnetic field and use it to navigate is the bee. Next week we will continue this series on the physics of native gardening by examining the physics of bees.
Northern cardinal song
No comments:
Post a Comment