Friday, June 23, 2017


Figure 14.12 of Intermediate Physics for Medicine and Biology shows a log-log plot of the diffusion constant of various molecules as a function of molecular weight. In the top panel of the figure, containing the small molecules, only four are listed: water (H2O), oxygen (O2), glucose (C6H12O6), and urea (CO(NH2)2). Water, oxygen, and glucose are obvious choices; they are central to life. But what did urea do to make the cut? And just what is urea, anyway?

I will let Isaac Asimov explain urea’s importance. In his book Life and Energy he writes
“Now let us turn to the proteins, which, after digestion, enter the body in the form of amino acids. Before these can be utilized for the production of useful energy they must be stripped of their nitrogen.

In 1773 the French chemist G. F. Rouelle (Lavoisier’s teacher) discovered a nitrogenous compound in urine and named it ‘urea’ after its source. Once the composition of proteins began to be studied at the beginning of the nineteenth century, urea was at once recognized as the obvious route by which the body excreted the nitrogen of protein.

Its formula was shown to be
or, more briefly, NH2CONH2, once structural formulas became the order of the day. As it happens, urea was involved in two startling advances in biochemistry. It was the first organic compound to be synthesized from an inorganic starting material (see Chapter 13) and the enzyme catalyzing its breakdown was the first to be crystallized (see Chapter 15)."
Russ Hobbie and I mention urea again when we discuss headaches in renal dialysis.
Dialysis is used to remove urea from the plasma of patients whose kidneys do not function. Urea is in the interstitial brain fluid and the cerebrospinal fluid in the same concentration as in the plasma; however, the permeability of the capillary–brain membrane is low, so equilibration takes several hours (Patton et al. 1989, Chap. 64). Water, oxygen, and nutrients cross from the capillary to the brain at a much faster rate than urea. As the plasma urea concentration drops, there is a temporary osmotic pressure difference resulting from the urea within the brain. The driving pressure of water is higher in the plasma, and water flows to the brain interstitial fluid. Cerebral edema results, which can cause severe headaches.”
The role of urea in refuting “vitalism” is a fascinating story. Again I will let Asimov tell it, this time quoting from his book A Short History of Biology.
“The Swedish chemist, Jons Jakob Berzelius (1779- 1848), suggested, in 1807, that substances obtained from living (or once-living) organisms be called 'organic substances,' while all others be referred to as 'inorganic substances.' He felt that while it was possible to convert organic substances to inorganic ones easily enough, the reverse was impossible except through the agency of life. To prepare organic substances from inorganic, some vital force present only in living tissue had to be involved.

This view, however, did not endure for long. In 1828, a German chemist, Friedrich Wohler (1800-82), was investigating cyanides and related compounds; compounds which were then accepted as inorganic. He was heating ammonium cyanate and found, to his amazement, that he obtained crystals that, on testing, proved to be urea. Urea was the chief solid constituent of mammalian urine and was definitely an organic compound.”
I guess urea earned its way into Figure 14.12. It is one of the key small molecules critical to life.

No comments:

Post a Comment