Friday, March 4, 2016

Welcome Home Scott Kelly

A photograph of Scott Kelly, when he returned to earth after a year on the space station.
Scott Kelly, when he returned to earth
after a year on the space station.
This week astronaut Scott Kelly returned to Earth after nearly a year on the International Space Station. One goal of his mission was to determine how astronauts would function during long trips in space. I suspect we will learn a lot from Kelly about life in a weightless environment. But one of the biggest risks during a mission to Mars would be radiation exposure, and we may not learn much about that from trips to the space station.

In space, the major source of radiation is cosmic rays, consisting mostly of high energy (GeV) protons. Most of these particles are absorbed by our atmosphere and never reach Earth, or are deflected by Earth’s magnetic field. The space station orbits above the atmosphere but within range of the geomagnetic field, so Kelly was partially shielded from cosmic rays. He probably experienced a dose of about 150 mSv. This is much larger than the annual background dose on the surface of the earth. According to Chapter 16 of Intermediate Physics for Medicine and Biology, we all are exposed to about 3 mSv per year.

A photograph of Scott and Mark Kelly.
Scott and Mark Kelly.
Is 150 mSv in one year dangerous? This dose is below the threshold for acute radiation sickness. It would, however, increase your chances of developing cancer. A rule of thumb is that the excess relative risk of cancer is about 5% per Sv. This does not mean Kelly has a 0.75% chance of getting cancer (5%/Sv times 0.15 Sv). Instead, it means that Scott Kelly has a 0.75% higher chance of getting cancer than his brother Mark Kelly, who remained on Earth. This is a significant increase in risk, but may be acceptable if your goal in life is to be an astronaut. The Kelly twins are both 52 years old, and the excess relative risk goes down with age, so the extra risk of Scott Kelly contracting cancer is probably less than 0.5%.

NASA’s goal is to send astronauts to Mars. Such a mission would require venturing beyond the range of Earth’s geomagnetic field, increasing the exposure to cosmic rays. Data obtained by the Mars rover Curiosity indicate that a one-year interplanetary trip would result in an exposure of 660 mSv. This would be four times Kelly's exposure in the space station. 660 mSv would be unlikely to cause serious acute radiation sickness, but would increase the cancer risk. NASA would have to either shield the astronauts from cosmic rays (not easy given their high energy) or accept the increased risk. I’m guessing they will accept the risk.

1 comment: