## Friday, July 18, 2014

### Hexagons and Cellular Excitable Media

Two of my favorite homework problems in the 4th edition of Intermediate Physics for Medicine and Biology are Problems 39 and 40 in Chapter 10. Russ Hobbie and I ask the student to analyze a cellular excitable medium (often called a cellular automaton), which provides much insight into propagation of excitation in cardiac tissue. I’ve discussed these problems before in this blog. I am always amazed how well you can understand cardiac arrhythmias using such a simple model that you could teach it to third graders.

I learned about cellular excitable media from Art Winfree’s book When Time Breaks Down. To the best of my knowledge, the idea was first introduced by James Greenberg and Stuart Hastings in their paper Spatial Patterns for Discrete Models of Diffusion in Excitable Media (SIAM Journal on Applied Mathematics, Volume 34, pages 515-523, 1978), although they performed their simulations on a rectangular grid rather than on a hexagonal grid as in the homework problems from IPMB. Winfree, with his son Erik Winfree and Herbert Seifert, extended the model to three dimensions, and found exotic “organizing centers” such as a “linked pair of twisted scroll rings” (Organizing Centers in a Cellular Excitable Medium, Physica D: Nonlinear Phenomena, Volume 17, Pages 109-115, 1985).

I imagine that students may have a difficult time with our homework problems, not because the problems themselves are difficult, but because they don’t have easy access to predrawn hexagon grids. It would be like trying to play chess without a chessboard. When I assign these problems, I provide my students with pages of hexagon grids, so they can focus on the physics. I thought my blog readers might also find this useful, so now you can find a page of predrawn hexagons on the book website. Or, if you prefer, you can find hexagon graph paper for free online here.

In the previous blog entry I mention a paper I published in the Online Journal of Cardiology in which I extended the cellular excitable medium to account for the virtual electrodes created when stimulating cardiac tissue. This change allowed the model to predict quatrefoil reentry. I concluded the paper by writing
“This extremely simple cellular excitable medium—which is nothing more than a toy model, stripped down to contain only the essential features—can, with one simple modification for strong stimuli, predict many interesting and important phenomena. Much of what we have learned about virtual electrodes and deexcitation is predicted correctly by the model (Efimov et al., 2000; Trayanova, 2001). I am astounded that this simple model can reproduce the complex results obtained by Lindblom et al. (2000). The model provides valuable insight into the essential mechanisms of electrical stimulation without hiding the important features behind distracting details.”
Unfortunately, the Online Journal of Cardiology no longer exists, so the link in my previous blog entry does not work. You can download a copy of this paper at my website. It contains everything except the animations that accompanied the figures in the original journal article.