Friday, October 25, 2013

From Neuron to Brain

In 1982, when I was accepted into graduate school at Vanderbilt University, I already knew that I wanted to study with John Wikswo, who was measuring the magnetic field of nerve axons. There was just one problem: I didn’t know how nerves worked. So I asked John to recommend some books that would get me up-to-speed before I arrived in Nashville. One text he suggested was From Neuron to Brain, by Stephen Kuffler and John Nicholls. The book taught me the basics of nerve electrophysiology, and allowed me to be (more-or-less) ready to go when I showed up at Vanderbilt.

From Neuron to Brain is now in its 5th edition. I obtained a copy through interlibrary loan, and I’m delighted to say that it still looks to be a great neuroscience textbook. One change is that the authors are different. Kuffler died in 1980, but Nicholls has carried on, now with 5 coauthors (don’t you just hate it when a fine textbook adds additional “coauthors” in later editions!). The Preface to the 5th edition begins
“When the First Edition of our book appeared in 1976, its preface stated that our aim was ‘…to describe how nerve cells go about their business of transmitting signals, how the signals are put together, and how out of this integration higher functions emerge. The book is directed to the reader who is curious about the workings of the nervous system but does not necessarily have a specialized background in biological sciences. We illustrate the main points by selected examples…’

This new, Fifth Edition has been written with the same aim in mind but in a very different context. When the First Edition appeared there were hardly any books, and only a few journals devoted to the nervous system. The extraordinary advances in molecular biology, genetics, and immunology had not been applied to the study of nerve cells or the brain, and the internet was not available for searching the literature. The explosion of knowledge since 1976 means that even though we still want to produce a readable narrative, the topics that have to be addressed and the number of pages have increased. Inevitably, descriptions of certain older experiments have had to be jettisoned, even though they still seem beautiful. Nevertheless, our approach continues to be to follow ideas from their conception to the latest developments. To this end, in this edition we have retained descriptions of classical experiments as well as the newest findings. In this way we hope to present key lines of research of interest for practicing research workers and teachers of neurobiology, as well as for readers who are not familiar with the field.”
I’ve always believed the From Neuron to Brain did a great job describing the Hodgkin and Huxley model, a topic that Russ Hobbie and I cover in Chapter 6 of the 4th edition of Intermediate Physics for Medicine and Biology. Many of the key figures from the Hodgkin and Huxley papers are redrawn in a uniform, crisp, elegant style. Some pictures I remember from the first edition, such as the photos of Hodgkin and Huxley, but others--like the illustrations of the detailed structures of potassium and sodium ion channels--are obviously new. Someone put a tremendous amount of time and effort into creating an outstanding collection of illustrations and figures, all with an appropriate and effective use of color, clearly labeled axes, with an uncluttered and simple style. Bravo!

From Neuron to Brain uses little math, and the few equations that do appear are most often just presented, not derived. Those wanting to understand the mathematical basis of the Hodgkin-Huxley model would be well advised to keep a copy of IPMB nearby as you read From Neuron to Brain. Conversely, readers of IPMB who have a weak background in biology might want to keep a copy of From Neuron to Brain close at hand as the work their way through IPMB (especially Chapters 6-9). The two books are complimentary. You won’t find the cable equation written down, much less analyzed, in From Neuron to Brain. But with those gorgeous figures to look at, you may not notice the lack of math.

I really like two other features of From Neuron to Brain. They have an extensive glossary at the back of the book, defining important terms. When I was first learning nerve electrophysiology to prepare for graduate school, one of my biggest obstacles was the vocabulary. Biologists use strange words. I suppose it was more difficult back in those days because we didn’t have Google and Wikipedia (how did we get anything done?), but even today I still appreciate having the glossary handy. Also present in the first edition, and still there now, is an extensive bibliography. Perhaps the beginning student doesn’t refer to the bibliography much, but when you really start digging deep into a subject you want to consult the original papers. As Russ and I work on updating IPMB for the 5th edition, there is always a tension between citing older classic papers and adding new modern ones. From Neuron to Brain has an interesting mix of the new and the old. They provide over 60 pages of citations in small font; I estimate about 40 references per page, for something like 2400 articles. Now that’s a bibliography!

Readers of IPMB looking for more details about nerve electrophysiology will find the 5th edition of From Neuron to Brain to be a valuable text. I'm not familiar with the competing neuroscience textbooks, but I would be surprised if they are all of this high quality.

No comments:

Post a Comment