Friday, July 31, 2009

Roberts Prize

One journal that readers of the 4th edition of Intermediate Physics for Medicine and Biology may enjoy is Physics in Medicine and Biology. Below is part of an editorial that recently appeared in PMB.
The publishers of Physics in Medicine and Biology (PMB), IOP Publishing, in association with the journal owners, the Institute of Physics and Engineering in Medicine (IPEM), jointly award an annual prize for the “best” paper published in PMB during the previous year.

The procedure for deciding the winner has been made as thorough as possible, to try to ensure that an outstanding paper wins the prize. We started off with a shortlist of the 10 research papers published in 2008 which were rated the best based on the referees’ quality assessments. Following the submission of a short “case for winning” document by each of the shortlisted authors, an IPEM college of jurors of the status of FIPEM assessed and rated these 10 papers in order to choose a winner, which was then endorsed by the Editorial Board.

It was a close run thing between the top two papers this year. The Board feel that we have a very worthy winner... We have much pleasure in advising the readers of PMB that the 2008 Roberts Prize is awarded to J P Schlomka et al for their paper on multi-energy CT.
The abstract of the paper (J P Schlomka, E Roessl, R Dorscheid, S Dill, G Martens, T Istel, C Bäumer, C Herrmann, R~Steadman, G Zeitler, A Livne and R Proksa, “Experimental Feasibility of Multi-Energy Photon-Counting K-Edge Imaging in Pre-Clinical Computed Tomography,” Physics in Medicine and Biology, Volume 53, Pages 4031–4047, 2008) is reproduced below
Theoretical considerations predicted the feasibility of K-edge x-ray computed tomography (CT) imaging using energy discriminating detectors with more than two energy bins. This technique enables material-specific imaging in CT, which in combination with high-Z element based contrast agents, opens up possibilities for new medical applications. In this paper, we present a CT system with energy detection capabilities, which was used to demonstrate the feasibility of quantitative K-edge CT imaging experimentally. A phantom was imaged containing PMMA, calcium-hydroxyapatite, water and two contrast agents based on iodine and gadolinium, respectively. Separate images of the attenuation by photoelectric absorption and Compton scattering were reconstructed from energy-resolved projection data using maximum-likelihood basis-component decomposition. The data analysis further enabled the display of images of the individual contrast agents and their concentrations, separated from the anatomical background. Measured concentrations of iodine and gadolinium were in good agreement with the actual concentrations. Prior to the tomographic measurements, the detector response functions for monochromatic illumination using synchrotron radiation were determined in the energy range 25 keV–60 keV. These data were used to calibrate the detector and derive a phenomenological model for the detector response and the energy bin sensitivities.
You can learn more about the Robert’s award and the winning paper at the IOP’s excellent website I signed up for their weekly email, which is where I learned about this year’s winner. It is a great way for readers of Intermediate Physics for Medicine and Biology to keep up-to-date on recent breakthroughs in medical physics.

No comments:

Post a Comment