Radon Action Month Proclamation by Michigan Governor Gretchen Whitmer. |
Russ Hobbie and I discuss radon in Chapter 16 of Intermediate Physics for Medicine and Biology.
Radon is produced naturally in many types of rock. It is a noble gas, but its decay products can become lodged in the lung. An excess of lung cancer has been well documented in uranium miners, who have been exposed to fairly high radon concentrations as well as high dust levels and tobacco smoke. Radon at lower concentrations seeps from soil into buildings and contributes a large fraction of the exposure to the general population.The Environmental Protection Agency published A Citizen’s Guide to Radon: The Guide to Protecting Yourself and Your Family from Radon. It recommends that you fix your home if your radon level is greater than 4 pCi/L (a picocurie per liter is equal to 37 decays per second per cubic meter of air).
Let’s put that into perspective. According to EPA’s 2003 Assessment of Risks from Radon in Homes, radon causes about 21,000 lung cancer deaths per year.
Based on its analysis, EPA estimates that out of a total of 157,400 lung cancer deaths nationally in 1995, 21,100 (13.4%) were radon related. Among NS [non-smokers], an estimated 26% were radon related... The estimated risks from lifetime exposure at the 4 pCi/L action level are: 2.3% for the entire population, 4.1% for ES [smokers], and 0.73% for NS. A Monte Carlo uncertainty analysis that accounts for only those factors that can be quantified without relying too heavily on expert opinion indicates that estimates for the U.S. population and ES may be accurate to within factors of about 2 or 3.The data listed above are 25 years old. The American Cancer Society estimates that in 2020 about 136,000 deaths in the US will be from lung cancer. The reduction compared to 1995 is probably because fewer people smoke. I don’t see any way to accurately estimate the current number of radon-related deaths in the USA, but 20,000 per year is a reasonable guess based on the EPA’s 2003 Assessment.
Does this number make sense? Assume a 5% excess risk of dying from cancer per 1 Sievert of radiation dose. If we use the background dose from radon given in IPMB of about 2 mSv/year, then the excess risk is 0.0001/year. The current population of the US is about 330 million. Multiplying 330,000,000 times 0.0001 gives 33,000. This is the same order of magnitude as our 20,000 ballpark guess. Both of these estimates are uncertain, but they suggest that a few tens of thousands of deaths in the US each year are caused by radon. While this is not as bad as the coronavirus (80,000 deaths in a couple months), it’s still worrisome.
Tens of thousands dead. Really? Such estimates are based on the controversial linear-no-threshold model. A 2016 open-access article “Rectifying Radon’s Record: An Open Challenge to the EPA” by Jeffry Siegel, Charles Pennington, Bill Sacks, and James Welsh (International Journal of Radiology and Imaging Technology, Volume 2, Article Number 014) states
The American Lung Association has recently led a national workgroup to develop The National Radon Action Plan: A Strategy for Saving Lives. The U.S. Environmental Protection Agency (EPA) is the lead governmental organization projected to implement this plan. The stated intent of the plan is to address the “radon problem” in the United States, with the aim of saving 3,200 lives by the year 2020 through preventing at least a portion of the lung cancer mortality that is assumed to arise from inhaling modest doses of radon in homes, offices, and buildings. The plan identifies a number of actions that government can take in the spirit of saving lives by avoiding the inhalation of radon and its progeny. We are among a growing number of investigators who recognize the substantial body of evidence demonstrating that the radiation doses associated with indoor radon inhalation are not harmful. Radon, at these doses, is unlikely to be a cause of lung cancer, and, on the contrary, may be beneficial in various ways, including its paradoxical tendency to protect against lung cancer. In the present paper, we review and critique the past policies of the EPA with respect to indoor radon and the very impetus for the plan. We indicate that the plan should not be implemented because a preponderance of the evidence indicates an unintended consequence: implementation of the plan is likely to increase, rather than decrease, the risk of lung cancer.What are we to believe? I don’t know the real risk of radon exposure. One thing I do know is that we need to figure out whether or not the linear-no-threshold model is correct. Are tens of thousands of our citizens dying each year from radon exposure? It seems to me that with so many lives at stake, our nation needs to invest the time and money necessary to answer this question. Either the EPA overestimates the risk, in which case we can focus on other more pressing issues, or it accurately estimates the risk, in which case we have an epidemic on our hands.