IEEE Transactions on Biomedical Engineering. |
THE IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING (TBME) is celebrating 60 years of publishing biomedical engineering advances. TBME was one of the first journals devoted to biomedical engineering. Thanks to IEEE, all of the TBME papers since January 1964 have been archived and are available to the public. In this special issue, celebrating TBME’s 60th anniversary, we have invited 20 leading groups in biomedical engineering research to contribute review articles. Each article reviews state of the art and trends in an area of biomedical engineering research in which the authors have made important original contributions. Due to limited space, it is not our intention to cover all areas of biomedical engineering research in this special issue, but instead to provide coverage of major subfields within the discipline of biomedical engineering, including biomedical imaging, neuroengineering, cardiovascular engineering, cellular and tissue engineering, biomedical sensors and instrumentation, biomedical signal processing, medical robotics, bioinformatics, and computational biology. These review articles are witness to the development of the field of biomedical engineering, and also reflect the role that TBME has played in advancing the field of biomedical engineering over the past 60 years…
These comprehensive and timely reviews reflect the breadth and depth of biomedical engineering and its impact to engineering, biology, medicine, and the larger society. These reviews aim to serve the readers in gaining insights and an understanding of particular areas in biomedical engineering. Many articles also share perspectives from the authors on future trends in the field. While the intention of this special issue was not to cover all research programs in biomedical engineering, these 20 articles represent a collection of state-of-the-art reviews that highlight exciting and significant research in the field of biomedical engineering and will serve TBME readers and the biomedical engineering community in years to come.Biomedical Engineering can be thought of as an applied version of medical and biological physics, and many of the topics Russ Hobbie and I discuss in the 4th edition of Intermediate Physics for Medicine and Biology are important to biomedical engineers. We cite nineteen IEEE TBME papers in IPMB:
Tucker, R. D., and O. H. Schmitt (1978) “Tests for Human Perception of 60 Hz Moderate Strength Magnetic Fields,” IEEE Trans. Biomed. Eng. Volume 25, Pages 509–518.
Wiley, J. D., and J. G. Webster (1982) “Analysis and Control of the Current Distribution under Circular Dispersive Electrodes,” IEEE Trans. Biomed. Eng. Volume 29, Pages 381–385.
Cohen, D., I. Nemoto, L. Kaufman, and S. Arai (1984) “Ferrimagnetic Particles in the Lung Part II: The Relaxation Process,” IEEE Trans. Biomed. Eng. Volume 31, Pages 274–285.
Stark, L. W. (1984) “The Pupil as a Paradigm for Neurological Control Systems,” IEEE Trans. Biomed. Eng. Volume 31, Pages 919–924.
Barach, J. P., B. J. Roth, and J. P. Wikswo (1985) “Magnetic Measurements of Action Currents in a Single Nerve Axon: A Core Conductor Model,” IEEE Trans. Biomed. Eng. Volume 32, Pages 136–140.
Geddes, L. A., and J. D. Bourland (1985) “The Strength-Duration Curve,” IEEE Trans. Biomed. Eng. Volume 32, Pages 458–459.
Stanley, P. C., T. C. Pilkington, and M. N. Morrow (1986) “The Effects of Thoracic Inhomogeneities on the Relationship Between Epicardial and Torso Potentials,” IEEE Trans. Biomed. Eng. Volume 33, Pages 273–284.
Gielen, F. L. H., B. J. Roth and J. P. Wikswo, Jr. (1986) “Capabilities of a Toroid-Amplifier System for Magnetic Measurements of Current in Biological Tissue,” IEEE Trans. Biomed. Eng. Volume 33, Pages 910–921.
Pickard, W. F. (1988) “A Model for the Acute Electrosensitivity of Cartilaginous Fishes,” IEEE Trans. Biomed. Eng. Volume 35, Pages 243–249.
Purcell, C. J., G. Stroink, and B. M. Horacek (1988) “Effect of Torso Boundaries on Electrical Potential and Magnetic Field of a Eipole,” IEEE Trans. Biomed. Eng. Volume 35, Pages 671–678.
Trayanova, N., C. S. Henriquez, and R. Plonsey (1990) “Limitations of Approximate Solutions for Computing Extracellular Potential of Single Fibers and Bundle Equivalents,” IEEE Trans. Biomed. Eng. Volume 37, Pages 22–35.
Voorhees, C. R., W. D. Voorhees III, L. A. Geddes, J. D. Bourland, and M. Hinds (1992) “The Chronaxie for Myocardium and Motor Nerve in the Dog with Surface Chest Electrodes,” IEEE Trans. Biomed. Eng. Volume 39, Pages 624–628.
Tan, G. A., F. Brauer, G. Stroink, and C. J. Purcell (1992) “The Effect of Measurement Conditions on MCG Inverse Solutions,” IEEE Trans. Biomed. Eng. Volume 39, Pages 921–927.
Roth, B. J. and J. P. Wikswo, Jr. (1994) “Electrical Stimulation of Cardiac Tissue: A Bidomain Model with Active Membrane Properties,” IEEE Trans. Biomed. Eng. Volume 41, Pages 232–240.
Tai, C., and D. Jiang (1994) “Selective Stimulation of Smaller Fibers in a Compound Nerve Trunk with Single Cathode by Rectangular Current Pulses,” IEEE Trans. Biomed. Eng. Volume 41, Pages 286–291.
Kane, B. J., C. W. Storment, S. W. Crowder, D. L. Tanelian, and G. T. A. Kovacs (1995) “Force-Sensing Microprobe for Precise Stimulation of Mechanoreceptive Tissues,” IEEE Trans. Biomed. Eng. Volume 42, Pages 745–750.
Esselle, K. P., and M. A. Stuchly (1995) “Cylindrical Tissue Model for Magnetic Field Stimulation of Neurons: Effects of Coil Geometry,” IEEE Trans. Biomed. Eng. Volume 42, Pages 934–941.One endearing feature of the IEEE TBME is that at the end of an article they publish a picture and short bio of each author. Over the years, my goal has been to publish my entire CV, piece by little piece, in these short bios. Below is the picture and bio from my very first published paper, which appeared in IEEE TBME [Barach, Roth, and Wikswo (1985), cited above].
Roth, B. J. (1997) “Electrical Conductivity Values Used with the Bidomain Model of Cardiac Tissue,” IEEE Trans. Biomed. Eng. Volume 44, Pages 326–328.
Roth, B. J., and M. C. Woods (1999) “The Magnetic Field Associated with a Plane Wave Front Propagating through Cardiac Tissue,” IEEE Trans. Biomed. Eng. Volume 46, Pages 1288–1292.