Peter is an old friend of mine from the days when we were both staff fellows in the now-defunct Biomedical Engineering and Instrumentation Program at the National Institutes of Health in Bethesda, Maryland. We collaborated on many projects, including a study of magnetic stimulation of nerves (for example, see: Roth BJ, Basser PJ. “A Model of the Stimulation of a Nerve Fiber by Electromagnetic Induction,” IEEE Transactions on Biomedical Engineering, Volume 37, Pages 588–597, 1990.)
Peter is now the head of the Section on Tissue Biophysics and Biomimetics, which is part of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. The goal of his section is “to understand fundamental physical mechanisms governing tissue-level physiological processes that are essential for life, or necessary to achieve a high quality of life. Examples include understanding the physical basis of nerve excitability and of effective load bearing in cartilage. This entails discovering relationships between physiological function and a tissue's structure, organization, and physical properties. This is done by studying the behavior of biological model systems using novel quantitative approaches (e.g., experimental methods, mathematical models, physical models). Another aim of ours is to transfer these new methodologies to the biomedical research and healthcare communities. An example includes the invention and successful dissemination of diffusion tensor magnetic resonance imaging from the 'bench' to the ‘bedside.’”
Diffusion tensor imaging is one of the topics that Russ Hobbie and I added to the 4th edition of Intermediate Physics for Medicine and Biology (see Chapter 18, Section 13). We also wrote a new homework problem that asked the student to show that the trace of the diffusion tensor is independent of fiber direction. We had trouble deciding if this problem belonged in Chapter 4 (on diffusion) or Chapter 18 (on magnetic resonance imaging), and we ended up putting the problem in both chapters (see Problems 4.22 and 18.40). Another homework problem featuring Peter’s work on cartilage appears in Chapter 5 (Problem 5.6).
The Office of NIH History has published an interview with Peter, in which he explains how he developed diffusion tensor imaging. Below is a brief excerpt of this interview, describing the moment Peter conceived the idea of DTI (I make a cameo):
Actually, the first exposure I had to diffusion imaging was a talk that Denis Le Bihan had given. He had recently come to the NIH from France and talked about how diffusion could be used—I think it was in stroke—and I thought it was very interesting, but I didn’t really initially make a connection to it. But in the early 1990s, Denis Le Bihan and, I believe it was Philippe Douek had a poster presentation at one of the NIH research festivals off in a corner in one of the white tents that they had constructed over here in the parking lot East of Building 30. They had done something very novel. They had shown that they could color code different parts of the brain according to what they thought was the orientation of diffusion. That was a poster that resulted in a paper, I think early in the next year, by Denis and Philippe. But I visited that poster and I was there with my friend and colleague, Brad Roth, the guy I was doing the magnetic stimulation with, and I realized that there was something really fundamentally wrong with the approach that Denis and Philippe were using.The rest, as they say, is history. One of Peter's first papers on DTI (Basser PJ, Mattiello J, LeBihan D. “MR Diffusion Tensor Spectroscopy and Imaging,” Biophysical Journal, Volume 66, Pages 259–267, 1994) has been cited over 700 times according to the ISI Web of Knowledge. His coauthors were Denis Le Bihan (a previous ISMRM Gold Medal Winner) and James Mattiello (the first graduate of the Oakland University Medical Physics PhD Program). The technique is now widely used to map fiber orientation in the brain and the heart.
Congratulations Peter!
Listen to Peter Basser describe the invention and development of Diffusion Tensor Imaging.
https://www.youtube.com/watch?v=1_BeCeDak3w
https://www.youtube.com/watch?v=1_BeCeDak3w