Friday, May 13, 2016

Trivial Pursuit IPMB

A photograph of the game Trivial Pursuit.
Trivial Pursuit.
Trivial Pursuit is a popular and fun board game invented in the 1980s. While playing it, you learn many obscure facts (trivial, really).

When my daughter Kathy was in high school, she would sometimes test out of a subject by studying over the summer and then taking an exam. Occasionally I would help her study by skimming through her textbook and creating Trivial Pursuit-like questions. We would then play Trivial Pursuit using my questions instead of those from the game. I don’t know if it helped her learn, but she always passed those exams.

Readers of Intermediate Physics for Medicine and Biology may want a similar study aid to help them learn about biological and medical physics. Now they have it! At the book website you can download 100 game cards for Trivial Pursuit: IPMB. To play, you will need the game board, game pieces, and instructions of the original Trivial Pursuit, but you replace the game cards by the ones I wrote.

A photograph of the game pieces for Trivial Pursuit.
The game pieces for Trivial Pursuit.
In case you have never played, here are the rules in a nutshell. The board has a circle with spots of six colors. You roll a die and move your game piece around the circle, landing on the spots. Your opponent asks you a question about a topic determined by the color. If you answer correctly you roll again; if you are wrong your opponent rolls. There are special larger spots where a correct answer gets you get a little colored wedge. The first person to get all six colored wedges wins.

The original version of Trivial Pursuit had topics such as sports or literature. The Trivial Pursuit: IPMB topics are
  • Numbers and Units (blue)
  • People (pink)
  • Anatomy and Physiology (yellow)
  • Biological Physics (brown)
  • Medical Physics (green)
  • Mathematics (orange).
One challenge of an interdisciplinary subject like medical and biological physics is that you need a broad range of knowledge. I suspect mathematicians will find the math questions to be simple, but the biologists may find them difficult. Physicists may be unfamiliar with anatomy and physiology, and chemists may find all the topics hard. The beauty of the game is that it rewards a broad knowledge across disciplines.

A photograph of a game card for Trivial Pursuit.
A game card for Trivial Pursuit.
Many may find the People section most challenging. I suggest you only require the player to know the person’s last name, although the first name is also given on my game card. In Units and Numbers I generally only require numbers to be known approximately. The goal is to have an order-of-magnitude knowledge of biological parameters and physical constants. Many questions ask you to estimate the size of an object, like in Section 1.1 of IPMB. For the math and physics questions you may need a pencil and paper handy, because some of the questions contain equations. You can’t simply show your opponent the equation on the game card, because both the questions and answers are together. This is unlike the real Trivial Pursuit game cards, which had the answers on the back. Unfortunately, such two-sided cards are difficult to make.

I know the game is not perfect. Some questions are truly trivial and others ask for some esoteric fact that no one would be expected to remember. Some questions may have multiple answers of which only one is on the card. You can either print out the game cards (requiring 100 pieces of paper) or use a laptop or mobile device to view the pdf. I try to avoid repetitions, but with 100 game cards some may have slipped in inadvertently.

A photograph of the game Trivial Pursuit.
Trivial Pursuit.
I may try using Trivial Pursuit: IPMB next time I teach Biological Physics (PHY 325) or Medical Physics (PHY 326) here at Oakland University. It would be excellent for, say, the last day of class, or perhaps a day when I know many students will be absent (such as the Wednesday before Thanksgiving). It doesn’t teach important high-level skills, such as learning to use mathematical models to describe biology, or understanding how physics constrains the way organisms evolve. You can’t teach a complex and beautiful subject like tomography using Trivial Pursuit. But for learning a bunch of facts, the game is useful.

Enjoy!

Friday, May 6, 2016

Science Blogging

Science Blogging: The Essential Guide, by Wilcox, Brookshire, and Goldman, superimposed on Intermediate Physics for Medicine and Biology.
Science Blogging:
The Essential Guide,
by Wilcox, Brookshire, and Goldman.
After writing this blog for nine years, I decided it is time to figure out what I’m doing. So I read the book Science Blogging: The Essential Guide (Yale University Press, 2016), edited by Christie Wilcox, Bethany Brookshire, and Jason Goldman. Their preface concludes
By bringing together some of the most experienced voices from around the science blogosphere, we hope this book will have something to teach everyone. Whether you’re just getting started, have some blog posts under your belt, or are looking for fresh inspiration, you are not alone. The science communication community may seem overwhelming, but it’s friendly. Dive in and show us what you can do. Seriously. Tweet us and show us your stuff. And use our hashtag, #SciBlogGuide, and find us online at http://www.theopennotebook.com/science-blogging-essential-guide.
I enjoyed Science Blogging, but oddly I didn’t feel connected to what many of the authors discussed. What you are reading now is less a science blog and more an auxiliary resource for the textbook that Russ Hobbie and I wrote: Intermediate Physics for Medicine and Biology. My goal is to provide materials that help instructors use the book in their classes, and extend and update topics that readers of the book are interested in. I view this blog as being similar to the solutions manual and the errata: it augments the book. The closest Science Blogging came to my blog is in the last chapter, “From Science Blog to Book,” by Brian Switek. But his chapter was primarily about using a blog as a springboard to writing a book, and only at the end of his chapter did he add that “there’s no reason to stop blogging when your book comes out.” I did the opposite. My blog began after Russ and I published the 4th edition of IPMB, and my goal was to improve sales. Has it worked? It’s hard to say, because our sales have never been spectacular. I hope it has had some impact.

Matt Shipman’s chapter on “Metrics” inspired me to look into the statistics for my blog. The post with by far the most page views is Frank Netter, Medical Illustrator. While I liked that post, I don’t know why it has more than three times as many page views as the next most viewed entry. In fact, I see no correlation between the number of page views and what I consider quality or relevance.

Bethany Brookshire wrote a chapter on “Science Blogging and Money.” I like money as much as the next guy, but I don’t subject my dear readers to ads. Hobbieroth.blogspot.com is add-free. There is one exception: each blog post contains a reference to IPMB. I guess that is a sort of advertisement.

Several authors talked about building a following using Twitter. I don’t tweet, but should I? Do you want to hear about IPMB several times a day? I don’t think so. I’ll continue posting once a week; every Friday morning, like clockwork. By the way, what’s a hashtag? I always thought I was a hep cat, but I guess not.

My favorite chapter was Ed Yong’s essay about “Building an Audience for Your Blog.” Accumulating a large following is not my goal; I am more a citation man than a page view man. Yong’s advice is that “you have to have something worth writing about, and you have to write it well.” That sums it up nicely. I think that physics applied to medicine and biology is something worth writing about; I hope I write it well. Yong also writes “picture your ideal readers in your head: who are they?” While I hope anyone interested in biological physics or medical physics will find my blog useful, I don’t write it for such a broad audience. I write it for the students and teachers using Intermediate Physics for Medicine and Biology. And, I write it for myself. I hope you enjoy it. I do.

Friday, April 29, 2016

The Four Equations of Old Quantum Theory

Subtle is the Lord: The Science and the Life of Albert Einstein, by Abraham Pais, superimposed on Intermediate Physics for Medicine and Biology.
Subtle is the Lord,
by Abraham Pais.
In ‘Subtle is the Lord…”: The Science and the Life of Albert Einstein, Abraham Pais illustrates the old quantum theory using four equations:
Does Intermediate Physics for Medicine and Biology introduce students to these four landmark equations? Let us look one by one.

Planck’s law

Planck’s law for blackbody radiation is presented in Sec. 14.8 of IPMB as our Eq. 14.38 (see last week’s post in this blog). Although we don’t delve into the history of this equation, we do analyze it in detail, deriving the Stefan-Boltzmann law and the Wien displacement law (the peak frequency of radiation increases with temperature). Pais writes “It is remarkable that the old quantum theory would originate from the analysis of a problem as complex as blackbody radiation. From 1859 to 1926, this problem remained at the frontier of theoretical physics, first in thermodynamics, then in electromagnetism, then in the old quantum theory, and finally in quantum statistics.”

The Photoelectric Effect

IPMB presents the photoelectric effect equation as Eq. 15.3 in the chapter about the Interaction of Photons and Charged Particles with Matter. However, it is not discussed in the context of light shining on a metal surface. Rather, it describes a photon interacting with tissue. “In the photoelectric effect…the photon is absorbed by the atom and a single electron, called a photoelectron, is ejected. The initial photon energy is equal to…the kinetic energy of the electron…plus the excitation energy of the atom.” The photoelectric effect is the primary mechanism by which low energy photons (soft x-rays, up to photon energies of roughly 100 keV) interact with tissue. It is the main contributor to the tissue cross section at low energies.

The Rydberg Constant

The atomic energy levels of hydrogen, as derived by Niels Bohr, are presented in Eq. 14.8 of IPMB. However, the Rydberg constant is not mentioned in our book except in homework problem 14.4, where the student is asked to “Find an expression for [the Rydberg constant] in terms of fundamental constants.”

The Specific Heat of a Solid

Sorry, but you won’t find Einstein’s equation for the specific heat of a solid in IPMB. In Section 3.1 we do discuss heat capacity. But biology occurs at fairly high temperatures, and human biology is essentially isothermal. The power of Einstein’s equation becomes evident when you examine how the specific heat decreases as the temperature approaches absolute zero. This behavior is critical for understanding low temperature physics, but is irrelevant for physics applied to medicine and biology.

Friday, April 22, 2016

Chernobyl

A photograph of the Chernobyl nuclear reactor after the accident that occured on April 26, 1986.
The Chernobyl nuclear reactor.
The worst nuclear accident ever happened thirty years ago this week: Chernobyl. Below are excerpts from a UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) website about the disaster.

Summary

The accident at the Chernobyl nuclear reactor that occurred on 26 April 1986 was the most serious accident ever to occur in the nuclear power industry. The reactor was destroyed in the accident and considerable amounts of radioactive material were released to the environment. The accident caused the deaths, within a few weeks, of 30 workers and radiation injuries to over a hundred others. In response, the authorities evacuated, in 1986, about 115,000 people from areas surrounding the reactor and subsequently relocated, after 1986, about 220,000 people from Belarus, the Russian Federation and Ukraine .…

Among the residents of Belarus, the Russian Federation and Ukraine, there had been up to the year 2005 more than 6,000 cases of thyroid cancer reported in children and adolescents who were exposed at the time of the accident, and more cases can be expected during the next decades. Notwithstanding the influence of enhanced screening regimes, many of those cancers were most likely caused by radiation exposures shortly after the accident. Apart from this increase, there is no evidence of a major public health impact attributable to radiation exposure two decades after the accident. There is no scientific evidence of increases in overall cancer incidence or mortality rates or in rates of non-malignant disorders that could be related to radiation exposure. The incidence of leukaemia in the general population, one of the main concerns owing to the shorter time expected between exposure and its occurrence compared with solid cancers, does not appear to be elevated. Although those most highly exposed individuals are at an increased risk of radiation-associated effects, the great majority of the population is not likely to experience serious health consequences as a result of radiation from the Chernobyl accident. Many other health problems have been noted in the populations that are not related to radiation exposure.

Release of Radionuclides

The accident at the Chernobyl reactor happened during an experimental test of the electrical control system as the reactor was being shut down for routine maintenance. The operators, in violation of safety regulations, had switched off important control systems and allowed the reactor, which had design flaws, to reach unstable, low-power conditions. A sudden power surge caused a steam explosion that ruptured the reactor vessel, allowing further violent fuel-steam interactions that destroyed the reactor core and severely damaged the reactor building. Subsequently, an intense graphite fire burned for 10 days. Under those conditions, large releases of radioactive materials took place.

The radioactive gases and particles released in the accident were initially carried by the wind in westerly and northerly directions. On subsequent days, the winds came from all directions. The deposition of radionuclides was governed primarily by precipitation occurring during the passage of the radioactive cloud, leading to a complex and variable exposure pattern throughout the affected region, and to a lesser extent, the rest of Europe.

Exposure of Individuals

The radionuclides released from the reactor that caused exposure of individuals were mainly iodine-131, caesium-134 and caesium-137. Iodine-131 has a short radioactive half-life (eight days), but it can be transferred to humans relatively rapidly from the air and through consumption of contaminated milk and leafy vegetables. Iodine becomes localized in the thyroid gland.….

The isotopes of caesium have relatively longer half-lives (caesium-134 has a half-life of 2 years while that of caesium-137 is 30 years). These radionuclides cause longer-term exposures through the ingestion pathway and through external exposure from their deposition on the ground. Many other radionuclides were associated with the accident, which were also considered in the exposure assessments.

Average effective doses to those persons most affected by the accident were assessed to be about 120 mSv for 530,000 recovery operation workers, 30 mSv for 115,000 evacuated persons and 9 mSv during the first two decades after the accident to those who continued to reside in contaminated areas.… Maximum individual values of the dose may be an order of magnitude and even more …. [As discussed in Chapter 16 of Intermediate Physics for Medicine and Biology, the average annual background dose is about 3 mSv.]

Conclusions

The accident at the Chernobyl nuclear power plant in 1986 was a tragic event for its victims, and those most affected suffered major hardship. Some of the people who dealt with the emergency lost their lives. Although those exposed as children and the emergency and recovery workers are at increased risk of radiation-induced effects, the vast majority of the population need not live in fear of serious health consequences due to the radiation from the Chernobyl accident. For the most part, they were exposed to radiation levels comparable to or a few times higher than annual levels of natural background, and future exposures continue to slowly diminish as the radionuclides decay. Lives have been seriously disrupted by the Chernobyl accident, but from the radiological point of view, generally positive prospects for the future health of most individuals should prevail.
More about the physics of the disaster can be found at this hyperphysics website.

Today the remains of the reactor lie entombed in a concrete sarcophagus, a silent reminder of the Chernobyl nuclear accident.

Friday, April 15, 2016

The Eigenvalue Problem

An image of fiber tracts in the brain, obtained using Diffusion Tensor Imaging.
An image of fiber tracts in the brain
using Diffusion Tensor Imaging.
From: Wikipedia.
In Intermediate Physics for Medicine and Biology, Russ Hobbie and I consider many mathematical topics. We analyze partial differential equations, Fourier transforms, vector calculus, probability, and special functions such as Bessel functions and the error function. One mathematical technique we never analyze is the central problem of linear algebra: the eigenvalue problem.

Calculating the eigenvalues and eigenvectors of a matrix has medical and biological applications. For example, in Chapter 18 of IPMB, Russ and I discuss diffusion tensor imaging. In this technique, magnetic resonance imaging is used to measure, in each voxel, the diffusion tensor, or matrix.
The diffusion tensor.
This matrix is symmetric, so DxyDyx, etc. It contains information about how easily spins (primarily protons in water) diffuse throughout the tissue, and about the anisotropy of the diffusion: how the rate of diffusion changes with direction. White matter in the brain is made up of bundles of nerve axons, and spins can diffuse down the long axis of an axon much easier than in the direction perpendicular to it.

Suppose you measure the diffusion matrix to be
An example of a diffusion tensor.
How do you get the fiber direction from this matrix? That is the eigenvalue and eigenvector problem. Stated mathematically, the fibers are in the direction of the eigenvector corresponding to the largest eigenvalue. In other words, you can determine a coordinate system in which the diffusion matrix becomes diagonal, and the direction corresponding to the largest of the diagonal elements of the matrix is the fiber direction.

The eigenvalue problem starts with the assumption that there are some vectors r = (x, y, z) that obey the equation Dr = Dr, where D in bold is the matrix (a tensor) and D in italics is one of the eigenvalues (a scalar). We can multiply the right side by the identity matrix (1’s along the diagonal, 0’s off the diagonal) and then move this term to the left side, and get the system of equations
Solving the eigenvalue problem to determine the fiber direction from the diffusion tensor.
One obvious solution is (x, y, z) = (0, 0, 0), the trivial solution. There is a beautiful theorem from linear algebra, which I will not prove, stating that there is a nontrivial solution for (x, y, z) if and only if the determinant of the matrix is zero
Solving the eigenvalue problem to determine the fiber direction using a diffusion tensor.
I am going to assume you know how to evaluate a determinant. From this determinant, you can obtain the equation

Solving the eigenvalue problem to determine the fiber direction using a diffusion tensor.

This is a cubic equation for D, which is in general difficult to solve. However, you can show that this equation is equivalent to
Solving the eigenvalue problem to determine the fiber direction using a diffusion tensor.
Therefore, the eigenvalues of this diffusion matrix are 4, 1, and 1 (1 is a repeated eigenvalue). The largest eigenvalue is D = 4.

To find the eigenvector associated with the eigenvalue D = 4, we solve
Solving the eigenvalue problem to determine the fiber direction using a diffusion tensor.
The solution is (1, 1, 1), which points in the direction of the fibers. If you do this calculation at every voxel, you generate a fiber map of the brain, leading to beautiful pictures such as you can see at the top of this post, and here or here.

Sometimes anisotropy can be a nuisance. Suppose you just want to determine the amount of diffusion in a tissue independent of direction. You can show (see Problem 49 of Chapter 18 in IPMB) that the trace of the diffusion matrix is independent of the coordinate system. The trace is the sum of the diagonal elements of the matrix. In our example, it is 2+2+2 = 6. In the coordinate system aligned with the fiber axis, the trace is just the sum of the eigenvalues, 4+1+1 = 6 (you have to count the repeated eigenvalue twice). The trace is the same.

Now you try. Here is a new homework problem for Section 13 in Chapter 18 of IPMB.
Problem 49 1/2. Suppose the diffusion tensor in one voxel is
A diffusion tensor to be used in a new homework problem for Intermediate Physics for Medicine and Biology.
a) Determine the fiber direction.
b) Show explicitly in this case that the trace is the same in the original matrix as in the matrix rotated so it is diagonal.
One word of warning. The examples in this blog post all happen to have simple integer eigenvalues. In general, that is not true and you need to use numerical methods to solve for the eigenvalues.

Have fun!